264 resultados para Damage mechanism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particle analysis methodology is presented, together with the morphology of the wear debris formed during rolling contact fatigue. Wear particles are characterised by their surface topography and in terms of wear mechanism. Rail-wheel materials are subjected to severe plastic deformation as the contact loading progresses, which contributes to a mechanism of major damage in head-hardened rail steel. Most of the current methodologies involve sectioning of the rail-wheel discs to trace material damage phenomena such as crack propagation and plastic strain accumulation. This paper proposes methodology to analyse the development of the plastically deformed layer by sectioning wear particles using the focussed ion beam (FIB) milling method. Moreover, it highlights the processes of oxidation and rail surface delamination during unlubricated rolling contact fatigue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface receptor molecules. High concentrations of three of its putative proinflammatory ligands, S100A8/A9 complex (calprotectin), S100A8, and S100A12, are found in rheumatoid arthritis (RA) serum and synovial fluid. In contrast, soluble RAGE (sRAGE) may prevent proinflammatory effects by acting as a decoy. This study evaluated the serum levels of S100A9, S100A8, S100A12 and sRAGE in RA patients, to determine their relationship to inflammation and joint and vascular damage. Methods: Serum sRAGE, S100A9, S100A8 and S100A12 levels from 138 patients with established RA and 44 healthy controls were measured by ELISA and compared by unpaired t test. In RA patients, associations with disease activity and severity variables were analyzed by simple and multiple linear regressions. Results: Serum S100A9, S100A8 and S100A12 levels were correlated in RA patients. S100A9 levels were associated with body mass index (BMI), and with serum levels of S100A8 and S100A12. S100A8 levels were associated with serum levels of S100A9, presence of anti-citrullinated peptide antibodies (ACPA), and rheumatoid factor (RF). S100A12 levels were associated with presence of ACPA, history of diabetes, and serum S100A9 levels. sRAGE levels were negatively associated with serum levels of C-reactive protein (CRP) and high-density lipoprotein (HDL), history of vasculitis, and the presence of the RAGE 82Ser polymorphism. Conclusions: sRAGE and S100 proteins were associated not just with RA inflammation and autoantibody production, but also with classical vascular risk factors for end-organ damage. Consistent with its role as a RAGE decoy molecule, sRAGE had the opposite effects to S100 proteins in that S100 proteins were associated with autoantibodies and vascular risk, whereas sRAGE was associated with protection against joint and vascular damage. These data suggest that RAGE activity influences co-development of joint and vascular disease in rheumatoid arthritis patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of tunnel junction resistances on the electronic property and the magneto-resistance of few-layer graphene sheet networks is investigated. By decreasing the tunnel junction resistances, transition from strong localization to weak localization occurs and magneto-resistance changes from positive to negative. It is shown that the positive magneto-resistance is due to Zeeman splitting of the electronic states at the Fermi level as it changes with the bias voltage. As the tunnel junction resistances decrease, the network resistance is well described by 2D weak localization model. Sensitivity of the magneto-resistance to the bias voltage becomes negligible and diminishes with increasing temperature. It is shown 2D weak localization effect mainly occurs inside of the few-layer graphene sheets and the minimum temperature of 5 K in our experiments is not sufficiently low to allow us to observe 2D weak localization effect of the networks as it occurs in 2D disordered metal films. Furthermore, defects inside the few-layer graphene sheets have negligible effect on the resistance of the networks which have small tunnel junction resistances between few-layer graphene sheets

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The “third-generation” 3D graphene structures, T-junction graphene micro-wells (T-GMWs) are produced on cheap polycrystalline Cu foils in a single-step, low-temperature (270 °C), energy-efficient, and environment-friendly dry plasma-enabled process. T-GMWs comprise vertical graphene (VG) petal-like sheets that seemlessly integrate with each other and the underlying horizontal graphene sheets by forming T-junctions. The microwells have the pico-to-femto-liter storage capacity and precipitate compartmentalized PBS crystals. The T-GMW films are transferred from the Cu substrates, without damage to the both, in de-ionized or tap water, at room temperature, and without commonly used sacrificial materials or hazardous chemicals. The Cu substrates are then re-used to produce similar-quality T-GMWs after a simple plasma conditioning. The isolated T-GMW films are transferred to diverse substrates and devices and show remarkable recovery of their electrical, optical, and hazardous NO2 gas sensing properties upon repeated bending (down to 1 mm radius) and release of flexible trasparent display plastic substrates. The plasma-enabled mechanism of T-GMW isolation in water is proposed and supported by the Cu plasma surface modification analysis. Our GMWs are suitable for various optoelectronic, sesning, energy, and biomedical applications while the growth approach is potentially scalable for future pilot-scale industrial production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel electrochemical biosensor, DNA/hemin/nafion–graphene/GCE, was constructed for the analysis of the benzo(a)pyrene PAH, which can produce DNA damage induced by a benzo(a)pyrene (BaP) enzyme-catalytic product. This biosensor was assembled layer-by-layer, and was characterized with the use of cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and atomic force microscopy. Ultimately, it was demonstrated that the hemin/nafion–graphene/GCE was a viable platform for the immobilization of DNA. This DNA biosensor was treated separately in benzo(a)pyrene, hydrogen peroxide (H2O2) and in their mixture, respectively, and differential pulse voltammetry (DPV) analysis showed that an oxidation peak was apparent after the electrode was immersed in H2O2. Such experiments indicated that in the presence of H2O2, hemin could mimic cytochrome P450 to metabolize benzo(a)pyrene, and a voltammogram of its metabolite was recorded. The DNA damage induced by this metabolite was also detected by electrochemical impedance and ultraviolet spectroscopy. Finally, a novel, indirect DPV analytical method for BaP in aqueous solution was developed based on the linear metabolite versus BaP concentration plot; this method provided a new, indirect, quantitative estimate of DNA damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims to understand the influence of TiO2 surface structure in Au/TiO2 catalysts on CO oxidation. Au nanoparticles (3 wt%) in the range of 4 to 8 nm were loaded onto four kinds of TiO2 surfaces, which had different surface structures and were synthesized by calcining hydrogen titanate nanotubes at various temperatures and in different atmospheres. The Au catalyst supported on anatase nanorods exhibited the highest activity in CO oxidation at 30 °C among all the five Au/TiO2 catalysts including the reference catalyst of Au/TiO2-P25. X-ray photoelectron spectroscopy (XPS) and infrared emission spectra (IES) results indicate that the anatase nanorods have the most active surface on which water molecules can be strongly adsorbed and OH groups can be formed readily. Theoretical calculation indicates that the surface OH can facilitate the O2 adsorption on the anatase surface. Such active surface features are conducive to the O2 activation and CO oxidation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pattern recognition is a promising approach for the identification of structural damage using measured dynamic data. Much of the research on pattern recognition has employed artificial neural networks (ANNs) and genetic algorithms as systematic ways of matching pattern features. The selection of a damage-sensitive and noise-insensitive pattern feature is important for all structural damage identification methods. Accordingly, a neural networks-based damage detection method using frequency response function (FRF) data is presented in this paper. This method can effectively consider uncertainties of measured data from which training patterns are generated. The proposed method reduces the dimension of the initial FRF data and transforms it into new damage indices and employs an ANN method for the actual damage localization and quantification using recognized damage patterns from the algorithm. In civil engineering applications, the measurement of dynamic response under field conditions always contains noise components from environmental factors. In order to evaluate the performance of the proposed strategy with noise polluted data, noise contaminated measurements are also introduced to the proposed algorithm. ANNs with optimal architecture give minimum training and testing errors and provide precise damage detection results. In order to maximize damage detection results, the optimal architecture of ANN is identified by defining the number of hidden layers and the number of neurons per hidden layer by a trial and error method. In real testing, the number of measurement points and the measurement locations to obtain the structure response are critical for damage detection. Therefore, optimal sensor placement to improve damage identification is also investigated herein. A finite element model of a two storey framed structure is used to train the neural network. It shows accurate performance and gives low error with simulated and noise-contaminated data for single and multiple damage cases. As a result, the proposed method can be used for structural health monitoring and damage detection, particularly for cases where the measurement data is very large. Furthermore, it is suggested that an optimal ANN architecture can detect damage occurrence with good accuracy and can provide damage quantification with reasonable accuracy under varying levels of damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple one-step electrodeposition method was used to construct a glassy carbon electrode (GCE), which has been modified with Cu doped gold nanoparticles (GNPs), i.e. a Cu@AuNPs/GCE. This electrode was characterized with the use of scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The eugenol was electrocatalytically oxidized at the Cu@AuNPs/GCE. At this electrode, in comparison with the behavior at the GCE alone, the corresponding oxidation peak current was enhanced and the shift of the oxidation potentials to lower values was observed. Electrochemical behavior of eugenol at the Cu@AuNPs/GCE was investigated with the use of the cyclic voltammetry (CV) technique, and additionally, in order to confirm the electrochemical reaction mechanism for o-methoxy phenols, CVs for catechol, guaiacol and vanillin were investigated consecutively. Based on this work, an electrochemical reaction mechanism for o-methoxy phenols was suggested, and in addition, the above Cu@AuNPs/GCE was successfully employed for the analysis of eugenol in food samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ankylosing spondylitis is a common form of inflammatory arthritis predominantly affecting the spine and pelvis that occurs in approximately 5 out of 1,000 adults of European descent. Here we report the identification of three variants in the RUNX3, LTBR-TNFRSF1A and IL12B regions convincingly associated with ankylosing spondylitis (P < 5 × 10-8 in the combined discovery and replication datasets) and a further four loci at PTGER4, TBKBP1, ANTXR2 and CARD9 that show strong association across all our datasets (P < 5 × 10-6 overall, with support in each of the three datasets studied). We also show that polymorphisms of ERAP1, which encodes an endoplasmic reticulum aminopeptidase involved in peptide trimming before HLA class I presentation, only affect ankylosing spondylitis risk in HLA-B27-positive individuals. These findings provide strong evidence that HLA-B27 operates in ankylosing spondylitis through a mechanism involving aberrant processing of antigenic peptides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pakistan is widely known and appreciated in the world for its history, Islamic culture and norms. Since the creation of Pakistan, it inherited poverty in its roots. There are many reasons for poverty but one lies on the shoulder of women who are 50% of the total population of Pakistan. On the apex of it, women do not take part in the development of Pakistan because when they step out of their homes, they suffer a lot of problems. These problems are a hurdle in their active participation in development .Government has tried to create an environment for those women, who suffer different problems. Harassment of women at work place is one of those problems which discourage women in taking active part in economic and social development of society. Women Activists, from the last decade, were working for the protection of woman’s right at workplace and they succeeded in formulation of Harassment Act 2010. Since law is ineffective without its proper mechanism of implementation, steps should be taken for its proper implementation mechanism. This article aims to provide information about the provisions of law, related to the harassment of women at workplace with an attempt to explore the effectiveness of its implementation. The study was conducted in twin cities of Pakistan, Islamabad and Rawalpindi. Interviews were conducted with the employees and employers of organizations, educational institutions, women activists, NGOs workers, lawyers, judges and some law enforcement officers. Group discussions were also held with teachers, students of Human rights and religious personalities. This report focuses on the implementation mechanism of new legislation in Pakistan. It also highlights some important facts related to its enforcement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron nitride nanomaterials have attracted significant interest due to their superior chemical and physical properties. Despite these novel properties, investigation on the interaction between boron nitride nanoparticle (BN NP) and living systems has been limited. In this study, BN NP (100–250 nm) is assessed as a promising biomaterial for medical applications. The toxicity of BN NP is evaluated by assessing the cells behaviours both biologically (MTT assay, ROS detection etc.) and physically (atomic force microscopy). The uptake mechanism of BN NP is studied by analysing the alternations in cellular morphology based on cell imaging techniques. The results demonstrate in vitro cytocompatibility of BN NP with immense potential for use as an effective nanoparticle for various bio-medical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally twins are classified as dizygous or fraternal and monozygous or identical (Hall Twinning, 362, 2003 and 735-743). We report a rare case of 46,XX/46,XY twins: Twin A presented with ambiguous genitalia and Twin B was a phenotypically normal male. These twins demonstrate a third, previously unreported mechanism for twinning. The twins underwent initial investigation with 17-hydroxyprogesterone and testosterone levels, pelvic ultrasound and diagnostic laparoscopy. Cytogenetic analysis was performed on peripheral blood cells and skin fibroblasts. Histological examination and Fluorescence in situ hybridization studies on touch imprints were performed on gonadal biopsies. DNA analysis using more than 6,000 DNA markers was performed on skin fibroblast samples from the twins and on peripheral blood samples from both parents. Twin A was determined to be a true hermaphrodite and Twin B an apparently normal male. Both twins had a 46,XX/46,XY chromosome complement in peripheral lymphocytes, skin fibroblasts, and gonadal biopsies. The proportion of XX to XY cells varied between the twins and the tissues evaluated. Most significantly the twins shared 100% of maternal alleles and approximately 50% of paternal alleles in DNA analysis of skin fibroblasts. The twins are chimeric and share a single genetic contribution from their mother but have two genetic contributions from their father thus supporting the existence of a third, previously unreported type of twinning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Masonry under compression is affected by the properties of its constituents and their interfaces. In spite of extensive investigations of the behaviour of masonry under compression, the information in the literature cannot be regarded as comprehensive due to ongoing inventions of new generation products – for example, polymer modified thin layer mortared masonry and drystack masonry. As comprehensive experimental studies are very expensive, an analytical model inspired by damage mechanics is developed and applied to the prediction of the compressive behaviour of masonry in this paper. The model incorporates a parabolic progressively softening stress-strain curve for the units and a progressively stiffening stress-strain curve until a threshold strain for the combined mortar and the unit-mortar interfaces is reached. The model simulates the mutual constraints imposed by each of these constituents through their respective tensile and compressive behaviour and volumetric changes. The advantage of the model is that it requires only the properties of the constituents and considers masonry as a continuum and computes the average properties of the composite masonry prisms/wallettes; it does not require discretisation of prism or wallette similar to the finite element methods. The capability of the model in capturing the phenomenological behaviour of masonry with appropriate elastic response, stiffness degradation and post peak softening is presented through numerical examples. The fitting of the experimental data to the model parameters is demonstrated through calibration of some selected test data on units and mortar from the literature; the calibrated model is shown to predict the responses of the experimentally determined masonry built using the corresponding units and mortar quite well. Through a series of sensitivity studies, the model is also shown to predict the masonry strength appropriately for changes to the properties of the units and mortar, the mortar joint thickness and the ratio of the height of unit to mortar joint thickness. The unit strength is shown to affect the masonry strength significantly. Although the mortar strength has only a marginal effect, reduction in mortar joint thickness is shown to have a profound effect on the masonry strength. The results obtained from the model are compared with the various provisions in the Australian Masonry Structures Standard AS3700 (2011) and Eurocode 6.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-free CNTs exhibit high activity (conversion rate 99.6%, 6 h) towards the synthesis of chiral hydrobenzoin from benzaldehyde under near-UV light irradiation (320–400 nm). The CNT structure before and after the reaction, the interaction between the molecule and the CNT surface, the intermediate products, the substitution effect and the influence of light on the reaction were examined using various techniques. A photo-excited conduction electron transfer (PECET) mechanism for the photocatalytic reduction using CNTs has been proposed. This finding provides a green photocatalytic route for the production of hydrobenzoin and highlights a potential photocatalytic application of CNTs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research presents an innovative design approach for the development of high efficiency Ventricular assist device that can be used for long-term support a heart failure patient. Computational fluid dynamics (CFD) techniques were applied to the development and intensive analysis to improve the performance and reliability of the pump. From the CFD analysis, a prototype pump was created and evaluated on the mock circulation loop that simulate the human circulatory system environment to evaluate its performance in support varying heart conditions.