243 resultados para CHIRAL DYNAMICS
Resumo:
Aggregation of the microtubule associated protein tau (MAPT) within neurons of the brain is the leading cause of tauopathies such as Alzheimer's disease. MAPT is a phospho-protein that is selectively phosphorylated by a number of kinases in vivo to perform its biological function. However, it may become pathogenically hyperphosphorylated, causing aggregation into paired helical filaments and neurofibrillary tangles. The phosphorylation induced conformational change on a peptide of MAPT (htau225−250) was investigated by performing molecular dynamics simulations with different phosphorylation patterns of the peptide (pThr231 and/or pSer235) in different simulation conditions to determine the effect of ionic strength and phosphate charge. All phosphorylation patterns were found to disrupt a nascent terminal β-sheet pattern (226VAVVR230 and 244QTAPVP249), replacing it with a range of structures. The double pThr231/pSer235 phosphorylation pattern at experimental ionic strength resulted in the best agreement with NMR structural characterization, with the observation of a transient α-helix (239AKSRLQT245). PPII helical conformations were only found sporadically throughout the simulations. Proteins 2014; 82:1907–1923. © 2014 Wiley Periodicals, Inc.
Resumo:
Direct nitrogen (N) losses from pastures contribute to the poor nitrogen use efficiency of the dairy industry, though the exact fate of applied N and the processes involved are largely unknown. Nitrification inhibitors such as DMPP can potentially increase fertilizer N use efficiency (NUE), though few studies globally have examined the effectiveness of DMPP coated urea in pastures. This study quantified the NUE of DMPP combined with reduced application rates, and the effect on N dynamics and plant–soil interactions over an annual ryegrass/kikuyu rotation in Queensland, Australia. Labeled 15N urea and DMPP was applied over 7 winter applications at standard farmer (45 kg N ha−1) and half (23 kg N ha−1) rates. Fertilizer recoveries and NUE were calculated over 13 harvests, and the contribution of fertilizer and soil N estimated. Up to 85% of the annual N harvested was from soil organic matter. DMPP at the lower rate increased annual yields by 31% compared to the equivalent urea treatment with no difference to the high N rates. Almost 40% of the N added at the conventional fertilizer application rate as urea was lost to the environment; 80 kg N ha−1 higher than the low DMPP. Combining the nitrification inhibitor DMPP with reduced fertilizer application rates shows substantial potential to reduce N losses to the environment while sustaining productivity in subtropical dairy pastures.
Resumo:
Background Poor clinical handover has been associated with inaccurate clinical assessment and diagnosis, delays in diagnosis and test ordering, medication errors and decreased patient satisfaction in the acute care setting. Research on the handover process in the residential aged care sector is very limited. Purpose The aims of this study were to: (i) Develop an in-depth understanding of the handover process in aged care by mapping all the key activities and their information dynamics, (ii) Identify gaps in information exchange in the handover process and analyze implications for resident safety, (iii) Develop practical recommendations on how information communication technology (ICT) can improve the process and resident safety. Methods The study was undertaken at a large metropolitan facility in NSW with more than 300 residents and a staff including 55 registered nurses (RNs) and 146 assistants in nursing (AINs). A total of 3 focus groups, 12 interviews and 3 observation sessions were conducted over a period from July to October 2010. Process mapping was undertaken by translating the qualitative data via a five-category code book that was developed prior to the analysis. Results Three major sub-processes were identified and mapped. The three major stages are Handover process (HOP) I “Information gathering by RN”, HOP II “Preparation of preliminary handover sheet” and HOP III “Execution of handover meeting”. Inefficient processes were identified in relation to the handover including duplication of information, utilization of multiple communication modes and information sources, and lack of standardization. Conclusion By providing a robust process model of handover this study has made two critical contributions to research in aged care: (i) a means to identify important, possibly suboptimal practices; and (ii) valuable evidence to plan and improve ICT implementation in residential aged care. The mapping of this process enabled analysis of gaps in information flow and potential impacts on resident safety. In addition it offers the basis for further studies into a process that, despite its importance for securing resident safety and continuity of care, lacks research.