356 resultados para Beijing da xue
Resumo:
This retrospective review examines healing in different sites on a porcine burn model; 24 pairs of burns on 18 pigs from other animal trials were selected for analysis. Each pair of burns was located on the either the cranial or the caudal part of the thoracic ribs region, on the same side of the animal. The burns were 40-50 cm(2) in size and of uniform deep-dermal partial thickness. Caudal burns healed significantly better than cranial burns, demonstrated by earlier closure of wounds, less scar formation and better cosmesis. To our knowledge, this is the first detailed study reporting that burn healing is affected by location on a porcine burn model. We recommend that similar symmetrical burns should be used for future comparative assessments of burn healing.
Resumo:
It is a comparative study between English and Chinese in expressing repetition and nonrepetition of past actions and in expressing repetition of past nonactions.
Resumo:
The Earth and its peoples are facing great challenges. As a species, humans are over-consuming the Earth’s resources and compromising the capacity of both natural and social systems to function in healthy and sustainable ways. Education at all levels and in all contexts, has a key role in helping societies move to more sustainable ways of living. Two areas in need of catch-up in relation to Education for Sustainable Development (ESD) are early childhood education and teacher education. Another area of challenge for ESD is the way it is currently oriented. To date, a great deal of emphasis has been placed on scientific and technological solutions to sustainability issues. This has led to an emphasis on STEM education as education’s main way of addressing sustainability. However, in this paper it is argued that sustainably is primarily a social issue that requires interdisciplinary education approaches. STEM approaches to ESD - emphasising knowledge construction and problem-solving - cannot, on their own, deal effectively with attitudes, values and actions towards more sustainable ways of living. In China and Australia, there are already policies, frameworks, guidelines and initiatives, such as Green Schools and Sustainable Schools that support such forms of ESD. STEM educators need to reach out to social scientists and social educators in order to more fully engage with activist and collaborative educational responses that equip learners with the knowledge, dispositions and capacities to ‘make a difference’.
Resumo:
MapReduce is a computation model for processing large data sets in parallel on large clusters of machines, in a reliable, fault-tolerant manner. A MapReduce computation is broken down into a number of map tasks and reduce tasks, which are performed by so called mappers and reducers, respectively. The placement of the mappers and reducers on the machines directly affects the performance and cost of the MapReduce computation in cloud computing. From the computational point of view, the mappers/reducers placement problem is a generation of the classical bin packing problem, which is NP-complete. Thus, in this paper we propose a new heuristic algorithm for the mappers/reducers placement problem in cloud computing and evaluate it by comparing with other several heuristics on solution quality and computation time by solving a set of test problems with various characteristics. The computational results show that our heuristic algorithm is much more efficient than the other heuristics and it can obtain a better solution in a reasonable time. Furthermore, we verify the effectiveness of our heuristic algorithm by comparing the mapper/reducer placement for a benchmark problem generated by our heuristic algorithm with a conventional mapper/reducer placement which puts a fixed number of mapper/reducer on each machine. The comparison results show that the computation using our mapper/reducer placement is much cheaper than the computation using the conventional placement while still satisfying the computation deadline.
Resumo:
Live migration of multiple Virtual Machines (VMs) has become an indispensible management activity in datacenters for application performance, load balancing, server consolidation. While state-of-the-art live VM migration strategies focus on the improvement of the migration performance of a single VM, little attention has been given to the case of multiple VMs migration. Moreover, existing works on live VM migration ignore the inter-VM dependencies, and underlying network topology and its bandwidth. Different sequences of migration and different allocations of bandwidth result in different total migration times and total migration downtimes. This paper concentrates on developing a multiple VMs migration scheduling algorithm such that the performance of migration is maximized. We evaluate our proposed algorithm through simulation. The simulation results show that our proposed algorithm can migrate multiple VMs on any datacenter with minimum total migration time and total migration downtime.
Resumo:
It has become more and more demanding to investigate the impacts of wind farms on power system operation as ever-increasing penetration levels of wind power have the potential to bring about a series of dynamic stability problems for power systems. This paper undertakes such an investigation through investigating the small signal and transient stabilities of power systems that are separately integrated with three types of wind turbine generators (WTGs), namely the squirrel cage induction generator (SCIG), the doubly fed induction generator (DFIG), and the permanent magnet generator (PMG). To examine the effects of these WTGs on a power system with regard to its stability under different operating conditions, a selected synchronous generator (SG) of the well-known Western Electricity Coordinating Council (WECC three-unit nine-bus system and an eight-unit 24-bus system is replaced in turn by each type of WTG with the same capacity. The performances of the power system in response to the disturbances are then systematically compared. Specifically, the following comparisons are undertaken: (1) performances of the power system before and after the integration of the WTGs; and (2) performances of the power system and the associated consequences when the SCIG, DFIG, or PMG are separately connected to the system. These stability case studies utilize both eigenvalue analysis and dynamic time-domain simulation methods.
Resumo:
In this paper, the inherent mechanism of benefits associated with smart grid development is examined based on the Pressure-State-Response (PSR) model from resource economics. The emerging types of technology brought up by smart grid development are taken as pressures. The improvements of the performance and efficiency of power system operation are taken as states. The effects of smart grid development on society are taken as responses. Then, a novel method for evaluating social benefits in energy saving and CO2 emission reduction from smart grid development is presented. Finally, the benefits in a province in northwest China is carried out by employing the developed evaluation system, and reasonable evaluation results are attained.
Resumo:
We propose to use a simple and effective way to achieve secure quantum direct secret sharing. The proposed scheme uses the properties of fountain codes to allow a realization of the physical conditions necessary for the implementation of no-cloning principle for eavesdropping-check and authentication. In our scheme, to achieve a variety of security purposes, nonorthogonal state particles are inserted in the transmitted sequence carrying the secret shares to disorder it. However, the positions of the inserted nonorthogonal state particles are not announced directly, but are obtained by sending degrees and positions of a sequence that are pre-shared between Alice and each Bob. Moreover, they can confirm that whether there exists an eavesdropper without exchanging classical messages. Most importantly, without knowing the positions of the inserted nonorthogonal state particles and the sequence constituted by the first particles from every EPR pair, the proposed scheme is shown to be secure.
Resumo:
The assumptions underlying the Probability Ranking Principle (PRP) have led to a number of alternative approaches that cater or compensate for the PRP's limitations. In this poster we focus on the Interactive PRP (iPRP), which rejects the assumption of independence between documents made by the PRP. Although the theoretical framework of the iPRP is appealing, no instantiation has been proposed and investigated. In this poster, we propose a possible instantiation of the principle, performing the first empirical comparison of the iPRP against the PRP. For document diversification, our results show that the iPRP is significantly better than the PRP, and comparable to or better than other methods such as Modern Portfolio Theory.
Resumo:
A set of resistance-type strain sensors has been fabricated from metal-coated carbon nanofiller (CNF)/epoxy composites. Two nanofillers, i.e., multi-walled carbon nanotubes and vapor growth carbon fibers (VGCFs) with nickel, copper and silver coatings were used. The ultrahigh strain sensitivity was observed in these novel sensors as compared to the sensors made from the CNFs without metal-coating, and conventional strain gauges. In terms of gauge factor, the sensor made of VGCFs with silver coating is estimated to be 155, which is around 80 times higher than that in a metal-foil strain gauge. The possible mechanism responsible for the high sensitivity and its dependence with the networks of the CNFs with and without metal-coating and the geometries of the CNFs were thoroughly investigated.
Resumo:
MapReduce is a computation model for processing large data sets in parallel on large clusters of machines, in a reliable, fault-tolerant manner. A MapReduce computation is broken down into a number of map tasks and reduce tasks, which are performed by so called mappers and reducers, respectively. The placement of the mappers and reducers on the machines directly affects the performance and cost of the MapReduce computation. From the computational point of view, the mappers/reducers placement problem is a generation of the classical bin packing problem, which is NPcomplete. Thus, in this paper we propose a new grouping genetic algorithm for the mappers/reducers placement problem in cloud computing. Compared with the original one, our grouping genetic algorithm uses an innovative coding scheme and also eliminates the inversion operator which is an essential operator in the original grouping genetic algorithm. The new grouping genetic algorithm is evaluated by experiments and the experimental results show that it is much more efficient than four popular algorithms for the problem, including the original grouping genetic algorithm.
Resumo:
A Software-as-a-Service or SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. Components in a composite SaaS may need to be scaled – replicated or deleted, to accommodate the user’s load. It may not be necessary to replicate all components of the SaaS, as some components can be shared by other instances. On the other hand, when the load is low, some of the instances may need to be deleted to avoid resource underutilisation. Thus, it is important to determine which components are to be scaled such that the performance of the SaaS is still maintained. Extensive research on the SaaS resource management in Cloud has not yet addressed the challenges of scaling process for composite SaaS. Therefore, a hybrid genetic algorithm is proposed in which it utilises the problem’s knowledge and explores the best combination of scaling plan for the components. Experimental results demonstrate that the proposed algorithm outperforms existing heuristic-based solutions.