302 resultados para Air bases, American


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives To quantify the mortality burden attributed to urban outdoor air pollution in South Africa in 2000. Design The study followed comparative risk assessment (CRA) methodology developed by the World Heath Organization (WHO). In most urban areas, annual mean concentrations of particulate matter (PM) with diameters less than 10 μum (PM10) from monitoring network data and PM with diameters less than 2.5 μm (PM2.5) derived using a ratio method were weighted according to population size. PM10 and PM2.5 data from air-quality assessment studies in areas not covered by the network were also included. Population-attributable fractions calculated using risk coefficients presented in the WHO study were weighted by the proportion of the total population (33%) in urban environments, and applied to revised estimates of deaths and years of life lost (YLLs) for South Africa in 2000. Setting South Africa. Subjects Children under 5 years and adults 30 years and older. Outcome measures Mortality and YLLs from lung cancer and cardiopulmonary disease in adults (30 years and older), and from acute respiratory infections (ARIs) in children aged 0 - 4 years. Results Outdoor air pollution in urban areas in South Africa was estimated to cause 3.7% of the national mortality from cardiopulmonary disease and 5.1% of mortality attributable to cancers of the trachea, bronchus and lung in adults aged 30 years and older, and 1.1% of mortality from ARIs in children under 5 years of age. This amounts to 4 637 or 0.9% (95% uncertainty interval 0.3 - 1.5%) of all deaths and about 42 000 YLLs, or 0.4% (95% uncertainty interval 0.1 - 0.7%) of all YLLs in persons in South Africa in 2000. Conclusion Urban air pollution has under-recognised public health impacts in South Africa. Fossil fuel combustion emissions and traffic-related air pollution remain key targets for public health in South Africa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple and reliable formation of biodegradable nanoparticles formed from poly-ε-caprolactone was achieved using 1.645 MHz piston atomization of a source fluid of 0.5% w/v of the polymer dissolved in acetone; the particles were allowed to descend under gravity in air 8 cm into a 1 mM solution of sodium dodecyl sulfate. After centrifugation to remove surface agglomerations, a symmetric monodisperse distribution of particles φ 186 nm (SD=5.7, n=6) was obtained with a yield of 65.2%. © 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Australian climate is highly suitable for using outdoor air for free building cooling. In order to evaluate the suitability of hybrid cooler for specific applications, a pre-design climate assessment tool is developed and presented in this paper. In addition to the consideration of the local climate, comfort zone proposed by ASHRAE handbook and specific design of building and operation of hybrid cooler, possible influence from environmental factors (e.g. air humidity and air velocity), as well as personal factors (e.g. activity level and clothing insulation) on occupant’s thermal comfort are also considered in this tool. It is demonstrated that with the input of climatic data for a particular location and the associated design data for a specific application, the developed climate assessment tool is able to not only sort outdoor air conditions into the different process regions but also project them onto the psychrometric chart. It can also be used to estimate the hours for an individual operational mode under various climate conditions and summarize them in a table “Results”.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internal heat sources may not only consume energy directly through their operation (e.g. lighting), but also contribute to building cooling or heating loads, which indirectly change building cooling and heating energy. Through the use of building simulation technique, this paper investigates the influence of building internal load densities on the energy and thermal performance of air conditioned office buildings in Australia. Case studies for air conditioned office buildings in major Australian capital cities are presented. It is found that with a decrease of internal load density in lighting and/or plug load, both the building cooling load and total energy use can be significantly reduced. Their effect on overheating hour reduction would be dependent on the local climate. In particular, it is found that if the building total internal load density is reduced from the base case of “medium” to “extra–low, the building total energy use under the future 2070 high scenario can be reduced by up to 89 to 120 kWh/m² per annum and the overheating problem could be completely avoided. It is suggested that the reduction in building internal load densities could be adopted as one of adaptation strategies for buildings in face of the future global warming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental work could be conducted in either laboratory or at field site. Generally, the laboratory experiments are carried out in an artificial setting and with a highly controlled environment. By contrast, the field experiments often take place in a natural setting, subject to the influences of many uncontrolled factors. Therefore, it is necessary to carefully assess the possible limitations and appropriateness of an experiment before embarking on it. In this paper, a case study of field monitoring of the energy performance of air conditioners is presented. Significant challenges facing the experimental work are described. Lessons learnt from this case study are also discussed. In particular, it was found that on-going analysis of the monitoring data and the correction of abnormal issues are two of the keys for a successful field test program. It was also shown that the installation of monitoring systems could have a significant impact on the accuracy of the data being collected. Before monitoring system was set up to collect monitoring data, it is recommended that an initial analysis of sample monitored data should be conducted to make sure that the monitoring data can achieve the expected precision. In the case where inevitable inherent errors were induced from the installation of field monitoring systems, appropriate remediation may need to be developed and implemented for the improved accuracy of the estimation of results. On-going analysis of monitoring data and correction of any abnormal issues would be the key to a successful field test program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ever growing populations in cities are associated with a major increase in road vehicles and air pollution. The overall high levels of urban air pollution have been shown to be of a significant risk to city dwellers. However, the impacts of very high but temporally and spatially restricted pollution, and thus exposure, are still poorly understood. Conventional approaches to air quality monitoring are based on networks of static and sparse measurement stations. However, these are prohibitively expensive to capture tempo-spatial heterogeneity and identify pollution hotspots, which is required for the development of robust real-time strategies for exposure control. Current progress in developing low-cost micro-scale sensing technology is radically changing the conventional approach to allow real-time information in a capillary form. But the question remains whether there is value in the less accurate data they generate. This article illustrates the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, whilst addressing the major challenges for their effective implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background An increase in bicycle commuting participation may improve public health and traffic congestion in cities. Information on air pollution exposure (such as perception, symptoms and risk management) contributes to the responsible promotion of bicycle commuting participation. Methods To determine perceptions, symptoms and willingness for specific exposure risk management strategies of exposure to air pollution, a questionnaire-based cross-sectional investigation was conducted with adult bicycle commuters (n = 153; age = 41 ± 11 yr; 28% female). Results Frequency of acute respiratory signs and symptoms are positively-associated with in- and post-commute compared to pre-commute time periods (p < 0.05); greater positive-association is with respiratory disorder compared to healthy, and female compared to male, participants. The perception (although not signs or symptoms) of in-commute exposure to air pollution is positive-associated with the estimated level of in-commute proximity to motorised traffic. The majority of participants indicated a willingness (which varied with health status and gender) to adopt risk management strategies (with certain practical features) if shown to be appropriate and effective. Conclusions While acute signs and symptoms of air pollution exposure are indicated with bicycle commuting, and more so in susceptible individuals, there is willingness to manage exposure risk by adopting effective strategies with desirable features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The drying of grapes is a more complex process compared to the dehydration of other agricultural materials due to the necessity of a pretreatment operation prior to drying. Grape drying to produce raisins is a very slow process, due to the peculiar structure of grape peel, that is covered by a waxy layer.Its removal has benn so far carried out by using several chemical pre-treatments. However, they cause heterogeneity in the waxes removal and create microscopic cracks. In this paper an abrasive pretreatment for enhancing the drying rate and preserving the grape samples is proposed. Two cultivars of grape were investigated: Regina white grape and Red Globe red grape. The drying kinetics of untreated and treated samples were studied using a convective oven at 50 C. Fruit quality parameters such as sugar and organic acid contents, shrinkage, texture, peel damage (i.e. by SEM analysis) and rehydration capacity were studied to evaluate the effectiveness of abrasive pretreatment on raisins. Abrasive pretreatment contributed to reduce drying time and rehydration time. The treated and untreated dried grapes were significantly different (p<0.05) in sugar and in tartaric acid content. On the contrary, no significant differences (p<0.05) in malic and citric acids in texture peoperties between untreated and treated samples were observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Climate change may affect mortality associated with air pollutants, especially for fine particulate matter (PM2.5) and ozone (O3). Projection studies of such kind involve complicated modelling approaches with uncertainties. Objectives We conducted a systematic review of researches and methods for projecting future PM2.5-/O3-related mortality to identify the uncertainties and optimal approaches for handling uncertainty. Methods A literature search was conducted in October 2013, using the electronic databases: PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search was limited to peer-reviewed journal articles published in English from January 1980 to September 2013. Discussion Fifteen studies fulfilled the inclusion criteria. Most studies reported that an increase of climate change-induced PM2.5 and O3 may result in an increase in mortality. However, little research has been conducted in developing countries with high emissions and dense populations. Additionally, health effects induced by PM2.5 may dominate compared to those caused by O3, but projection studies of PM2.5-related mortality are fewer than those of O3-related mortality. There is a considerable variation in approaches of scenario-based projection researches, which makes it difficult to compare results. Multiple scenarios, models and downscaling methods have been used to reduce uncertainties. However, few studies have discussed what the main source of uncertainties is and which uncertainty could be most effectively reduced. Conclusions Projecting air pollution-related mortality requires a systematic consideration of assumptions and uncertainties, which will significantly aid policymakers in efforts to manage potential impacts of PM2.5 and O3 on mortality in the context of climate change.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are three distinct categories of air environment to be considered in this chapter. These are as follows: (1) The “ambient” or general outdoors atmosphere to which the members of the population are exposed when they venture out of their homes or offices in industrial, urban or rural environments. (2) Indoor air environments, which occur in buildings such as homes, schools, restaurants, public hospitals and office buildings. This category does not cover factories or workplaces which are otherwise subjected to the provisions of various occupational health standards. (3) Workplace atmospheres, which occur in a variety of industries or factories and for which there are numerous atmospheric concentration limits (or exposure standards) promulgated by appropriate bodies or organisations. Since 2009 setting concentration limits for atmospheric contaminants has been administered by Safe Work Australia. A fourth category of air environment which falls outside this chapter is that which is related to upper atmospheric research, global atmospheric effects and concomitant areas of inquiry and/or debate. Such areas include “greenhouse” gas emissions, ozone depletion, and related matters of atmospheric chemistry and physics. This category is not referred to again in this chapter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent 'Global Burden of Disease' studies have provided quantitative evidence of the significant role air pollution plays as a human health risk factor (Lim et al., The Lancet, 380: 2224–2260, 2012). Tobacco smoke, including second hand smoke, household air pollution from solid fuels and ambient particulate matter are among the top risks, leading to lower life expectancy around the world. Indoor air constitutes an environment particularly rich in different types of pollutants, originating from indoor sources, as well as penetrating from outdoors, mixing, interacting or growing (when considering microbes) under the protective enclosure of the building envelope. Therefore, it is not a simple task to follow the dynamics of the processes occurring there, or to quantify the outcomes of the processes in terms of pollutant concentrations and other characteristics. This is further complicated by limitations such as building access for the purpose of air quality monitoring, or the instrumentation which can be used indoors, because of their possible interference with the occupants comfort (due to their large size, noise generated or amount of air drawn). European studies apportioned contributions of indoor versus outdoor sources of indoor air contaminants in 26 European countries and quantified IAQ associated DALYs (Disability-Adjusted Life Years) in those countries (Jantunen et al., Promoting actions for healthy indoor air (IAIAQ), European Commission Directorate General for Health and Consumers, Luxembourg, 2011). At the same time, there has been an increase in research efforts around the world to better understand the sources, composition, dynamics and impacts of indoor air pollution. Particular focus has been directed towards the contemporary sources, novel pollutants and new detection methods. The importance of exposure assessment and personal exposure, the majority of which occurs in various indoor micro¬environments, has also been realized. Overall, this emerging knowledge has been providing input for global assessments of indoor environments, the impact of indoor pollutants and their science based management and control. It was a major outcome of recent international conferences that interdisciplinarity and especially a better colla¬boration between exposure and indoor sciences would be of high benefit for the health related evaluation of environmental stress factors and pollutants. A very good example is the combination of biomonitoring and indoor air, particle and dust analysis to study the exposure routes of semi volatile organic compounds (SVOCs). We have adopted the idea of combining the forces of exposure and indoor sciences for this Special Issue, identified new and challenging topics and have attracted colleagues who are top researchers in their field to provide their inputs. The Special Issue includes papers, which collectively present advances in current research topics and in our view, build the bridge between indoor and exposure sciences.