324 resultados para robot mapping
Resumo:
Accurate three-dimensional representations of cultural heritage sites are highly valuable for scientific study, conservation, and educational purposes. In addition to their use for archival purposes, 3D models enable efficient and precise measurement of relevant natural and architectural features. Many cultural heritage sites are large and complex, consisting of multiple structures spatially distributed over tens of thousands of square metres. The process of effectively digitising such geometrically complex locations requires measurements to be acquired from a variety of viewpoints. While several technologies exist for capturing the 3D structure of objects and environments, none are ideally suited to complex, large-scale sites, mainly due to their limited coverage or acquisition efficiency. We explore the use of a recently developed handheld mobile mapping system called Zebedee in cultural heritage applications. The Zebedee system is capable of efficiently mapping an environment in three dimensions by continually acquiring data as an operator holding the device traverses through the site. The system was deployed at the former Peel Island Lazaret, a culturally significant site in Queensland, Australia, consisting of dozens of buildings of various sizes spread across an area of approximately 400 × 250 m. With the Zebedee system, the site was scanned in half a day, and a detailed 3D point cloud model (with over 520 million points) was generated from the 3.6 hours of acquired data in 2.6 hours. We present results demonstrating that Zebedee was able to accurately capture both site context and building detail comparable in accuracy to manual measurement techniques, and at a greatly increased level of efficiency and scope. The scan allowed us to record derelict buildings that previously could not be measured because of the scale and complexity of the site. The resulting 3D model captures both interior and exterior features of buildings, including structure, materials, and the contents of rooms.
Resumo:
The HOXB13 gene has been implicated in prostate cancer (PrCa) susceptibility. We performed a high resolution fine-mapping analysis to comprehensively evaluate the association between common genetic variation across the HOXB genetic locus at 17q21 and PrCa risk. This involved genotyping 700 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of 3195 SNPs in 20,440 PrCa cases and 21,469 controls in The PRACTICAL consortium. We identified a cluster of highly correlated common variants situated within or closely upstream of HOXB13 that were significantly associated with PrCa risk, described by rs117576373 (OR 1.30, P = 2.62×10(-14)). Additional genotyping, conditional regression and haplotype analyses indicated that the newly identified common variants tag a rare, partially correlated coding variant in the HOXB13 gene (G84E, rs138213197), which has been identified recently as a moderate penetrance PrCa susceptibility allele. The potential for GWAS associations detected through common SNPs to be driven by rare causal variants with higher relative risks has long been proposed; however, to our knowledge this is the first experimental evidence for this phenomenon of synthetic association contributing to cancer susceptibility.
Resumo:
Background Maintenance of communication is important for people with dementia living in long-term care. The purpose of this study was to assess the feasibility of using “Giraff”, a telepresence robot to enhance engagement between family and a person with dementia living in long-term care. Methods A mixed-methods approach involving semi-structured interviews, call records and video observational data was used. Five people with dementia and their family member participated in a discussion via the Giraff robot for a minimum of six times over a six-week period. A feasibility framework was used to assess feasibility and included video analysis of emotional response and engagement. Results Twenty-six calls with an average duration of 23 mins took place. Residents showed a general state of positive emotions across the calls with a high level of engagement and a minimal level of negative emotions. Participants enjoyed the experience and families reported that the Giraff robot offered the opportunity to reduce social isolation. A number of software and hardware challenges were encountered. Conclusions Participants perceived this novel approach to engage families and people with dementia as a feasible option. Participants were observed and also reported to enjoy the experience. The technical challenges identified have been improved in a newer version of the robot. Future research should include a feasibility trial of longer duration, with a larger sample and a cost analysis.
Resumo:
Supervisory Control and Data Acquisition systems (SCADA) are widely used to control critical infrastructure automatically. Capturing and analyzing packet-level traffic flowing through such a network is an essential requirement for problems such as legacy network mapping and fault detection. Within the framework of captured network traffic, we present a simple modeling technique, which supports the mapping of the SCADA network topology via traffic monitoring. By characterizing atomic network components in terms of their input-output topology and the relationship between their data traffic logs, we show that these modeling primitives have good compositional behaviour, which allows complex networks to be modeled. Finally, the predictions generated by our model are found to be in good agreement with experimentally obtained traffic.
Resumo:
Locomotion and autonomy in humanoid robots is of utmost importance in integrating them into social and community service type roles. However, the limited range and speed of these robots severely limits their ability to be deployed in situations where fast response is necessary. While the ability for a humanoid to drive a vehicle would aide in increasing their overall mobility, the ability to mount and dismount a vehicle designed for human occupants is a non-trivial problem. To address this issue, this paper presents an innovative approach to enabling a humanoid robot to mount and dismount a vehicle by proposing a simple mounting bracket involving no moving parts. In conjunction with a purpose built robotic vehicle, the mounting bracket successfully allowed a humanoid Nao robot to mount, dismount and drive the vehicle.
Resumo:
Mapping the Unmappable? the Choreography Shared Material on Dying through the Lens of the Technogenetic Dancer. If choreographic movement is a trace, which is already behind at the moment of its appearance, the impulses that move the dancer could be understood to reside in the virtual. Whether they are the internalized instructions of the choreographer, the inscriptions of concepts on the dancing body which shape how the dancer moves, or movement material that has been incorporated over time, this gestalt is somewhat mapped before is materialized. Erin Manning describes the moment before it manifests as the preacceleration of the movement, when the potentialities of the gesture collapse and stabilize into form. This form is transient, appearing as a trace that is dissolving as soon as it appears. In her critique of some approaches to collaborations between dance and technology she describes technology as a prosthetic that constrains the dancer's movement by inducing this collapse into stability and thus limiting the potentiality of the technogenetic body of the dancer. Thus the technology becomes the focus rather than the sophisticated sensorial skills of the dancer in movement. Using this challenge as a provocation, I have explored methods for mapping a choreographed phrase of movement from the piece entitled Shared Material on Dying by Irish choreographer, Liz Roche. I will explore the virtual space before this dance is materialized, through the frame of a technogenetic body. I will uncover, through phenomenological enquiry, the constituent elements that are embedded in this virtual map, that is, the associations, sensations and spatio-temporal reference points that have been incorporated over time. The purpose is to point to possible directions in mapping the virtual dance space and to understand choreographed movements not just in terms of their material trace but also in terms of the associations, sensations and perceptions that give a specific choreography its identity. This undertaking has relevance for archiving dance. This presentation will involve danced choreography alongside documented material to explore multiple perspectives on the piece and the experience of dancing it.
Resumo:
This paper presents a low-bandwidth multi-robot communication system designed to serve as a backup communication channel in the event a robot suffers a network device fault. While much research has been performed in the area of distributing network communication across multiple robots within a system, individual robots are still susceptible to hardware failure. In the past, such robots would simply be removed from service, and their tasks re-allocated to other members. However, there are times when a faulty robot might be crucial to a mission, or be able to contribute in a less communication intensive area. By allowing robots to encode and decode messages into unique sequences of DTMF symbols, called words, our system is able to facilitate continued low-bandwidth communication between robots without access to network communication. Our results have shown that the system is capable of permitting robots to negotiate task initiation and termination, and is flexible enough to permit a pair of robots to perform a simple turn taking task.
Resumo:
Mobile robots and animals alike must effectively navigate their environments in order to achieve their goals. For animals goal-directed navigation facilitates finding food, seeking shelter or migration; similarly robots perform goal-directed navigation to find a charging station, get out of the rain or guide a person to a destination. This similarity in tasks extends to the environment as well; increasingly, mobile robots are operating in the same underwater, ground and aerial environments that animals do. Yet despite these similarities, goal-directed navigation research in robotics and biology has proceeded largely in parallel, linked only by a small amount of interdisciplinary research spanning both areas. Most state-of-the-art robotic navigation systems employ a range of sensors, world representations and navigation algorithms that seem far removed from what we know of how animals navigate; their navigation systems are shaped by key principles of navigation in ‘real-world’ environments including dealing with uncertainty in sensing, landmark observation and world modelling. By contrast, biomimetic animal navigation models produce plausible animal navigation behaviour in a range of laboratory experimental navigation paradigms, typically without addressing many of these robotic navigation principles. In this paper, we attempt to link robotics and biology by reviewing the current state of the art in conventional and biomimetic goal-directed navigation models, focusing on the key principles of goal-oriented robotic navigation and the extent to which these principles have been adapted by biomimetic navigation models and why.
Resumo:
This thesis is a morphological study of the settlement patterns of the diverse hill groups in Chittagong Hill Tracts – a mountainous borderland of Bangladesh in South Asia. It examines the settlement morphology of a hill town, using a combination of both quantitative and qualitative methods, and explains the recurrent neighbourhood types of the highland groups in relation to their urbanisation. The research findings related to the settlements of diverse cultural groups in a cross-border region of the Asian uplands are also relevant to similar contexts and enquiries. Furthermore, the developed methodological framework that facilitated the data collection process in CHT's culturally diverse regions is also applicable to the investigation of geographic areas with similar socio-cultural complexities. Finally, this research specifically contributes to the literature of cross-cultural studies of highland towns and vernacular settlements in the Asian context.
Resumo:
This thesis demonstrates that robots can learn about how the world changes, and can use this information to recognise where they are, even when the appearance of the environment has changed a great deal. The ability to localise in highly dynamic environments using vision only is a key tool for achieving long-term, autonomous navigation in unstructured outdoor environments. The proposed learning algorithms are designed to be unsupervised, and can be generated by the robot online in response to its observations of the world, without requiring information from a human operator or other external source.
Resumo:
The aim of this ethnographic study was to understand welding practices in shipyard environments with the purpose of designing an interactive welding robot that can help workers with their daily job. The robot is meant to be deployed for automatic welding on jack-up rig structures. The design of the robot turns out to be a challenging task due to several problematic working conditions on the shipyard, such as dust, irregular floor, high temperature, wind variations, elevated working platforms, narrow spaces, and circular welding paths requiring a robotic arm with more than 6 degrees of freedom. Additionally, the environment is very noisy and the workers – mostly foreigners – have a very basic level of English. These two issues need to be taken into account when designing the interactive user interface for the robot. Ideally, the communication flow between the two parties involved should be as frictionless as possible. The paper presents the results of our field observations and welders’ interviews, as well as our robot design recommendation for the next project stage.
Resumo:
While social media research has provided detailed cumulative analyses of selected social media platforms and content, especially Twitter, newer platforms, apps, and visual content have been less extensively studied so far. This paper proposes a methodology for studying Instagram activity, building on established methods for Twitter research by initially examining hashtags, as common structural features to both platforms. In doing so, we outline methodological challenges to studying Instagram, especially in comparison to Twitter. Finally, we address critical questions around ethics and privacy for social media users and researchers alike, setting out key considerations for future social media research.
Resumo:
Project work can involve multiple people from varying disciplines coming together to solve problems as a group. Large scale interactive displays are presenting new opportunities to support such interactions with interactive and semantically enabled cooperative work tools such as intelligent mind maps. In this paper, we present a novel digital, touch-enabled mind-mapping tool as a first step towards achieving such a vision. This first prototype allows an evaluation of the benefits of a digital environment for a task that would otherwise be performed on paper or flat interactive surfaces. Observations and surveys of 12 participants in 3 groups allowed the formulation of several recommendations for further research into: new methods for capturing text input on touch screens; inclusion of complex structures; multi-user environments and how users make the shift from single- user applications; and how best to navigate large screen real estate in a touch-enabled, co-present multi-user setting.