346 resultados para real impedance generator
Resumo:
Criminal intelligence is an area of expertise highly sought-after internationally and within a variety of justice-related professions; however, producing university graduates with the requisite professional knowledge, as well as analytical, organisational and technical skills presents a pedagogical and technical challenge to university educators. The situation becomes even more challenging when students are undertaking their studies by distance education. This best practice session showcases the design of an online undergraduate unit for final year justice students which uses an evolving real-time criminal scenario as the focus of authentic learning activities in order to prepare students for graduate roles within the criminal intelligence and justice professions. Within the unit, students take on the role of criminal intelligence analysts, applying relevant theories, models and strategies to solve a complex but realistic crime and complete briefings and documentation to industry standards as their major summative assessment task. The session will demonstrate how the design of the online unit corresponds to authentic learning principles, and will specifically map the elements of the unit design to Herrington & Oliver’s instructional design framework for authentic learning (2000; Herrington & Herrington 2006). The session will show how a range of technologies was used to create a rich learning experience for students that could be easily maintained over multiple unit iterations without specialist technical support. The session will also discuss the unique pedagogical affordances and challenges implicated in the location of the unit within an online learning environment, and will reflect on some of the lessons learned from the development which may be relevant to other authentic online learning contexts.
Resumo:
Vehicular accidents are one of the deadliest safety hazards and accordingly an immense concern of individuals and governments. Although, a wide range of active autonomous safety systems, such as advanced driving assistance and lane keeping support, are introduced to facilitate safer driving experience, these stand-alone systems have limited capabilities in providing safety. Therefore, cooperative vehicular systems were proposed to fulfill more safety requirements. Most cooperative vehicle-to-vehicle safety applications require relative positioning accuracy of decimeter level with an update rate of at least 10 Hz. These requirements cannot be met via direct navigation or differential positioning techniques. This paper studies a cooperative vehicle platform that aims to facilitate real-time relative positioning (RRP) among adjacent vehicles. The developed system is capable of exchanging both GPS position solutions and raw observations using RTCM-104 format over vehicular dedicated short range communication (DSRC) links. Real-time kinematic (RTK) positioning technique is integrated into the system to enable RRP to be served as an embedded real-time warning system. The 5.9 GHz DSRC technology is adopted as the communication channel among road-side units (RSUs) and on-board units (OBUs) to distribute GPS corrections data received from a nearby reference station via the Internet using cellular technologies, by means of RSUs, as well as to exchange the vehicular real-time GPS raw observation data. Ultimately, each receiving vehicle calculates relative positions of its neighbors to attain a RRP map. A series of real-world data collection experiments was conducted to explore the synergies of both DSRC and positioning systems. The results demonstrate a significant enhancement in precision and availability of relative positioning at mobile vehicles.
Resumo:
The existence of Macroscopic Fundamental Diagram (MFD), which relates space-mean density and flow, has been shown in urban networks under homogeneous traffic conditions. Since MFD represents the area-wide network traffic performances, studies on perimeter control strategies and an area traffic state estimation utilizing the MFD concept has been reported. One of the key requirements for well-defined MFD is the homogeneity of the area-wide traffic condition with links of similar properties, which is not universally expected in real world. For the practical application of the MFD concept, several researchers have identified the influencing factors for network homogeneity. However, they did not explicitly take the impact of drivers’ behaviour and information provision into account, which has a significant impact on simulation outputs. This research aims to demonstrate the effect of dynamic information provision on network performance by employing the MFD as a measurement. A microscopic simulation, AIMSUN, is chosen as an experiment platform. By changing the ratio of en-route informed drivers and pre-trip informed drivers different scenarios are simulated in order to investigate how drivers’ adaptation to the traffic congestion influences the network performance with respect to the MFD shape as well as other indicators, such as total travel time. This study confirmed the impact of information provision on the MFD shape, and addressed the usefulness of the MFD for measuring the dynamic information provision benefit.
Resumo:
In our laboratory, we have developed methods in real-time detection and quantitative-polymerase chain reaction (Q-PCR) to analyse the relative levels of gene expression in post mortem brain tissues. We have then applied this method to examine differences in gene activity between normal white matter (NWM) and plaque tissue from multiple sclerosis (MS) patients. Genes were selected based on their association with pathology and through identification by previously conducted global gene expression analysis. Plaque tissue was obtained from secondary progressive (SP) patients displaying chronic active, as well as acute pathologies; while NWM from the same location was obtained from age- and sex-matched controls (normal patients). In this study, we used both SYBR Green I supplementation and commercially available mixes to assess both comparative and absolute levels of gene activity. The results of both methods compared favourably for four of the five genes examined (P < 0.05, Pearsons), while differences in gene expression between chronic active and acute pathologies were also identified. For example, a >50-fold increase in osteopontin (Spp1) and inositol 1-4-5 phosphate 3 kinase B (Itpkb) levels in acute plaques contrasted with the 5-fold or less increase in chronic active plaques (P < 0.05, unpaired t test). By contrast, there was no significant difference in the levels of the MS marker and calcium-dependent protease (Calpain, Capns1) in MS plaque tissue. In summary, Q-PCR analysis using SYBR Green I has allowed us to economically obtain what may be clinically significant information from small amounts of the CNS, providing an opportunity for further clinical investigations.
Resumo:
The main contribution of this project was to investigate power electronics technology in designing and developing high frequency high power converters for industrial applications. Therefore, the research was conducted at two levels; first at system level which mainly encapsulated the circuit topology and control scheme and second at application level which involves with real-world applications. Pursuing these objectives, varied topologies have been developed and proposed within this research. The main aim was to resolving solid-state switches limited power rating and operating speed while increasing the system flexibility considering the application characteristics. The developed new power converter configurations were applied to pulsed power and high power ultrasound applications for experimental validation.
Resumo:
With an increased emphasis on genotyping of single nucleotide polymorphisms (SNPs) in disease association studies, the genotyping platform of choice is constantly evolving. In addition, the development of more specific SNP assays and appropriate genotype validation applications is becoming increasingly critical to elucidate ambiguous genotypes. In this study, we have used SNP specific Locked Nucleic Acid (LNA) hybridization probes on a real-time PCR platform to genotype an association cohort and propose three criteria to address ambiguous genotypes. Based on the kinetic properties of PCR amplification, the three criteria address PCR amplification efficiency, the net fluorescent difference between maximal and minimal fluorescent signals and the beginning of the exponential growth phase of the reaction. Initially observed SNP allelic discrimination curves were confirmed by DNA sequencing (n = 50) and application of our three genotype criteria corroborated both sequencing and observed real-time PCR results. In addition, the tested Caucasian association cohort was in Hardy-Weinberg equilibrium and observed allele frequencies were very similar to two independently tested Caucasian association cohorts for the same tested SNP. We present here a novel approach to effectively determine ambiguous genotypes generated from a real-time PCR platform. Application of our three novel criteria provides an easy to use semi-automated genotype confirmation protocol.
Resumo:
This article considers recent cases on guarantees of business loans to identify the lending practices that led the court to set aside the guarantee as against the creditor on the basis that the creditor had engaged in unconscionable conduct. It also explores the role of industry codes of practice in preventing unconscionable conduct, including whether there is a correlation between commitment to an industry code and higher standards of lending practices; whether compliance with an industry code would have produced different outcomes in the cases considered; and whether lenders need to do more than comply with an industry code to ensure their practices are fair and reasonable.
Resumo:
Children with Autism Spectrum Disorder experience difficulty in communication and in understanding the social world which can have negative consequences for their relationships, in managing emotions, and generally dealing with the challenges of everyday life. This thesis examines the effectiveness of the Active and Reflective components of the Get REAL program through the assessment of the detailed coding of video-recorded observations and longitudinal quantitative analysis. The aim of Get REAL is to increase the social, emotional, and cognitive learning of children with High Functioning Autism (HFA). Get REAL is a group program designed specifically for use in inclusive primary school settings. The Get REAL program was designed in response to the mixed success of generalisation of learning to new contexts of existing social skills programs. The theoretical foundation of Get REAL is based upon pedagogical theory and learning theory to facilitate transfer of learning, combined with experiential, individualised, evaluative and organisational approaches. This thesis is by publication and consists of four refereed journal papers; 1 accepted for publication and 3 that are under review. Paper 1 describes the development and theoretical basis of the Get REAL program and provides detail of the program structure and learning cycle. The focus of Paper 1 reflects the first question of interest in the thesis which is about the extent to which learning derived from participation in the program can be generalised to other contexts. Participants are 16 children with HFA ranging in age from 8-13 years. Results provided support for the generalisability of learning from Get REAL to home and school evidenced by parent and teacher data collected pre and post participation in Get REAL. Following establishment of the generalisation of learning from Get REAL, Papers 2 and 3 focus on the Active and Reflective components of the program in order to examine how individual and group learning takes place. Participants (N = 12) in the program are video-taped during the Active and Reflective Sessions. Using identical coding protocols of video data, improvements in prosocial behaviour and diminishing of inappropriate behaviours were apparent with the exception of perspective taking. Data also revealed that 2 of the participants had atypical trajectories. An in-depth case study analysis was then conducted with these 2 participants in Paper 4. Data included reports from health care and education professionals within the school and externally (e.g., paediatrician) and identified the multi-faceted nature of care needed for children with comorbid diagnoses and extremely challenging family circumstances as a complex task to effect change. Results of this research support the effectiveness of the Get REAL program in promoting pro social behaviours such as improvements in engaging with others and emotional regulation, and in diminishing unwanted behaviours such as conduct problems. Further, the gains made by the participating children were found to be generalisable beyond Get REAL to home and other school settings. The research contained in the thesis adds to current knowledge about how learning can take place for children with HFA. Results show that an experiential learning framework with a focus on social cognition, together with explicit teaching, scaffolded with video feedback, are key ingredients for the generalisation of social learning to broader contexts.
Resumo:
Introduction: As part of ongoing quality assurance, all university programs must be regularly reviewed to ensure curriculum is current, meets university and national standards, and for medical science, criteria for AIMS Accreditation. With recent developments at the national and international level also signaling change, a course design team (CDT) was assembled and tasked with developing and implementing a new four year Bachelor of Medical Laboratory Science (BMLS) course at QUT. Method: A whole-of-course approach was adopted, incorporating inverted curriculum and Capstone experience. First, course vision and desired graduate profile are defined as course learning outcomes (CLO), i.e. skills, knowledge, behaviours and attributes graduates must demonstrate. CLO are then back-mapped into introductory, developmental and expected phases from fourth to first year on a course plan and assessment map. Unit learning outcomes (ULO) are then defined, and finally, each unit (subject) designed, directly aligned with assessment. Results: The resulting BMLS course represents a deliberate program of study across four years, which from day one, focuses on the professional aspects of MLS, clinical pathology disciplines, and incrementally developing and assessing the skills, knowledge, behaviours and attributes required to undertake the Work Integrated Learning Internship (WILI) and Capstone experience in final year, and subsequently, graduate from the program. Conclusions: At the start of the year, the BMLS commenced with higher than anticipated enrolments. To date, survey data and feedback is positive, with particular emphasis on the directed nature of the course. The method of course design also ensures university/national standards, and criteria for AIMS Accreditation have been met.
Resumo:
The early warning based on real-time prediction of rain-induced instability of natural residual slopes helps to minimise human casualties due to such slope failures. Slope instability prediction is complicated, as it is influenced by many factors, including soil properties, soil behaviour, slope geometry, and the location and size of deep cracks in the slope. These deep cracks can facilitate rainwater infiltration into the deep soil layers and reduce the unsaturated shear strength of residual soil. Subsequently, it can form a slip surface, triggering a landslide even in partially saturated soil slopes. Although past research has shown the effects of surface-cracks on soil stability, research examining the influence of deep-cracks on soil stability is very limited. This study aimed to develop methodologies for predicting the real-time rain-induced instability of natural residual soil slopes with deep cracks. The results can be used to warn against potential rain-induced slope failures. The literature review conducted on rain induced slope instability of unsaturated residual soil associated with soil crack, reveals that only limited studies have been done in the following areas related to this topic: - Methods for detecting deep cracks in residual soil slopes. - Practical application of unsaturated soil theory in slope stability analysis. - Mechanistic methods for real-time prediction of rain induced residual soil slope instability in critical slopes with deep cracks. Two natural residual soil slopes at Jombok Village, Ngantang City, Indonesia, which are located near a residential area, were investigated to obtain the parameters required for the stability analysis of the slope. A survey first identified all related field geometrical information including slope, roads, rivers, buildings, and boundaries of the slope. Second, the electrical resistivity tomography (ERT) method was used on the slope to identify the location and geometrical characteristics of deep cracks. The two ERT array models employed in this research are: Dipole-dipole and Azimuthal. Next, bore-hole tests were conducted at different locations in the slope to identify soil layers and to collect undisturbed soil samples for laboratory measurement of the soil parameters required for the stability analysis. At the same bore hole locations, Standard Penetration Test (SPT) was undertaken. Undisturbed soil samples taken from the bore-holes were tested in a laboratory to determine the variation of the following soil properties with the depth: - Classification and physical properties such as grain size distribution, atterberg limits, water content, dry density and specific gravity. - Saturated and unsaturated shear strength properties using direct shear apparatus. - Soil water characteristic curves (SWCC) using filter paper method. - Saturated hydraulic conductivity. The following three methods were used to detect and simulate the location and orientation of cracks in the investigated slope: (1) The electrical resistivity distribution of sub-soil obtained from ERT. (2) The profile of classification and physical properties of the soil, based on laboratory testing of soil samples collected from bore-holes and visual observations of the cracks on the slope surface. (3) The results of stress distribution obtained from 2D dynamic analysis of the slope using QUAKE/W software, together with the laboratory measured soil parameters and earthquake records of the area. It was assumed that the deep crack in the slope under investigation was generated by earthquakes. A good agreement was obtained when comparing the location and the orientation of the cracks detected by Method-1 and Method-2. However, the simulated cracks in Method-3 were not in good agreement with the output of Method-1 and Method-2. This may have been due to the material properties used and the assumptions made, for the analysis. From Method-1 and Method-2, it can be concluded that the ERT method can be used to detect the location and orientation of a crack in a soil slope, when the ERT is conducted in very dry or very wet soil conditions. In this study, the cracks detected by the ERT were used for stability analysis of the slope. The stability of the slope was determined using the factor of safety (FOS) of a critical slip surface obtained by SLOPE/W using the limit equilibrium method. Pore-water pressure values for the stability analysis were obtained by coupling the transient seepage analysis of the slope using finite element based software, called SEEP/W. A parametric study conducted on the stability of an investigated slope revealed that the existence of deep cracks and their location in the soil slope are critical for its stability. The following two steps are proposed to predict the rain-induced instability of a residual soil slope with cracks. (a) Step-1: The transient stability analysis of the slope is conducted from the date of the investigation (initial conditions are based on the investigation) to the preferred date (current date), using measured rainfall data. Then, the stability analyses are continued for the next 12 months using the predicted annual rainfall that will be based on the previous five years rainfall data for the area. (b) Step-2: The stability of the slope is calculated in real-time using real-time measured rainfall. In this calculation, rainfall is predicted for the next hour or 24 hours and the stability of the slope is calculated one hour or 24 hours in advance using real time rainfall data. If Step-1 analysis shows critical stability for the forthcoming year, it is recommended that Step-2 be used for more accurate warning against the future failure of the slope. In this research, the results of the application of the Step-1 on an investigated slope (Slope-1) showed that its stability was not approaching a critical value for year 2012 (until 31st December 2012) and therefore, the application of Step-2 was not necessary for the year 2012. A case study (Slope-2) was used to verify the applicability of the complete proposed predictive method. A landslide event at Slope-2 occurred on 31st October 2010. The transient seepage and stability analyses of the slope using data obtained from field tests such as Bore-hole, SPT, ERT and Laboratory tests, were conducted on 12th June 2010 following the Step-1 and found that the slope in critical condition on that current date. It was then showing that the application of the Step-2 could have predicted this failure by giving sufficient warning time.
Resumo:
We advocate for the use of predictive techniques in interactive computer music systems. We suggest that the inclusion of prediction can assist in the design of proactive rather than reactive computational performance partners. We summarize the significant role prediction plays in human musical decisions, and the only modest use of prediction in interactive music systems to date. After describing how we are working toward employing predictive processes in our own metacreation software we reflect on future extensions to these approaches.
Resumo:
Custom designed for display on the Cube Installation situated in the new Science and Engineering Centre (SEC) at QUT, the ECOS project is a playful interface that uses real-time weather data to simulate how a five-star energy building operates in climates all over the world. In collaboration with the SEC building managers, the ECOS Project incorporates energy consumption and generation data of the building into an interactive simulation, which is both engaging to users and highly informative, and which invites play and reflection on the roles of green buildings. ECOS focuses on the principle that humans can have both a positive and negative impact on ecosystems with both local and global consequence. The ECOS project draws on the practice of Eco-Visualisation, a term used to encapsulate the important merging of environmental data visualization with the philosophy of sustainability. Holmes (2007) uses the term Eco-Visualisation (EV) to refer to data visualisations that ‘display the real time consumption statistics of key environmental resources for the goal of promoting ecological literacy’. EVs are commonly artifacts of interaction design, information design, interface design and industrial design, but are informed by various intellectual disciplines that have shared interests in sustainability. As a result of surveying a number of projects, Pierce, Odom and Blevis (2008) outline strategies for designing and evaluating effective EVs, including ‘connecting behavior to material impacts of consumption, encouraging playful engagement and exploration with energy, raising public awareness and facilitating discussion, and stimulating critical reflection.’ Consequently, Froehlich (2010) and his colleagues also use the term ‘Eco-feedback technology’ to describe the same field. ‘Green IT’ is another variation which Tomlinson (2010) describes as a ‘field at the juncture of two trends… the growing concern over environmental issues’ and ‘the use of digital tools and techniques for manipulating information.’ The ECOS Project team is guided by these principles, but more importantly, propose an example for how these principles may be achieved. The ECOS Project presents a simplified interface to the very complex domain of thermodynamic and climate modeling. From a mathematical perspective, the simulation can be divided into two models, which interact and compete for balance – the comfort of ECOS’ virtual denizens and the ecological and environmental health of the virtual world. The comfort model is based on the study of psychometrics, and specifically those relating to human comfort. This provides baseline micro-climatic values for what constitutes a comfortable working environment within the QUT SEC buildings. The difference between the ambient outside temperature (as determined by polling the Google Weather API for live weather data) and the internal thermostat of the building (as set by the user) allows us to estimate the energy required to either heat or cool the building. Once the energy requirements can be ascertained, this is then balanced with the ability of the building to produce enough power from green energy sources (solar, wind and gas) to cover its energy requirements. Calculating the relative amount of energy produced by wind and solar can be done by, in the case of solar for example, considering the size of panel and the amount of solar radiation it is receiving at any given time, which in turn can be estimated based on the temperature and conditions returned by the live weather API. Some of these variables can be altered by the user, allowing them to attempt to optimize the health of the building. The variables that can be changed are the budget allocated to green energy sources such as the Solar Panels, Wind Generator and the Air conditioning to control the internal building temperature. These variables influence the energy input and output variables, modeled on the real energy usage statistics drawn from the SEC data provided by the building managers.
Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?
Resumo:
Invasions have increased the size of regional species pools, but are typically assumed to reduce native diversity. However, global-scale tests of this assumption have been elusive because of the focus on exotic species richness, rather than relative abundance. This is problematic because low invader richness can indicate invasion resistance by the native community or, alternatively, dominance by a single exotic species. Here, we used a globally replicated study to quantify relationships between exotic richness and abundance in grass-dominated ecosystems in 13 countries on six continents, ranging from salt marshes to alpine tundra. We tested effects of human land use, native community diversity, herbivore pressure, and nutrient limitation on exotic plant dominance. Despite its widespread use, exotic richness was a poor proxy for exotic dominance at low exotic richness, because sites that contained few exotic species ranged from relatively pristine (low exotic richness and cover) to almost completely exotic-dominated ones (low exotic richness but high exotic cover). Both exotic cover and richness were predicted by native plant diversity (native grass richness) and land use (distance to cultivation). Although climate was important for predicting both exotic cover and richness, climatic factors predicting cover (precipitation variability) differed from those predicting richness (maximum temperature and mean temperature in the wettest quarter). Herbivory and nutrient limitation did not predict exotic richness or cover. Exotic dominance was greatest in areas with low native grass richness at the site- or regional-scale. Although this could reflect native grass displacement, a lack of biotic resistance is a more likely explanation, given that grasses comprise the most aggressive invaders. These findings underscore the need to move beyond richness as a surrogate for the extent of invasion, because this metric confounds monodominance with invasion resistance. Monitoring species' relative abundance will more rapidly advance our understanding of invasions.
Resumo:
This book examines the principles and practice of real estate mortgages in an easily accessible text referenced to all the Australian States. It specifically deals with the major theoretical and practical aspects of the land mortgage, including vitiating factors in formation, mortgagees’ powers and duties and mortgagors’ rights – both statutory and other – as well as assignment, insurance and discharge. It focuses exclusively on real estate mortgages and provides a thorough account of the law through analysis of the plethora of court decisions and statutory provisions in this area. Duncan and Dixon analyse the substance of the mortgage transaction from creation through to rights of enforcement. In its detailed consideration of the rights and obligations of mortgagors and mortgagees, it covers topics such as priorities and tacking, insurance, variation and assignment, rights of discharge, entry into possession, foreclosure and power of sale. In addition, the book contains a separate chapter on factors that may affect the validity and enforcement of a mortgage, together with separate consideration of a mortgagee’s right to enforce a guarantee provided on behalf of a mortgagor, and the rights and liabilities associated with a receivership regime initiated by
Resumo:
This paper presents an investigation into event detection in crowded scenes, where the event of interest co-occurs with other activities and only binary labels at the clip level are available. The proposed approach incorporates a fast feature descriptor from the MPEG domain, and a novel multiple instance learning (MIL) algorithm using sparse approximation and random sensing. MPEG motion vectors are used to build particle trajectories that represent the motion of objects in uniform video clips, and the MPEG DCT coefficients are used to compute a foreground map to remove background particles. Trajectories are transformed into the Fourier domain, and the Fourier representations are quantized into visual words using the K-Means algorithm. The proposed MIL algorithm models the scene as a linear combination of independent events, where each event is a distribution of visual words. Experimental results show that the proposed approaches achieve promising results for event detection compared to the state-of-the-art.