299 resultados para quantity discount
Resumo:
Background Southeast Asia has been at the epicentre of recent epidemics of emerging and re-emerging zoonotic diseases. Community-based surveillance and control interventions have been heavily promoted but the most effective interventions have not been identified. Objectives This review evaluated evidence for the effectiveness of community-based surveillance interventions at monitoring and identifying emerging infectious disease; the effectiveness of community-based control interventions at reducing rates of emerging infectious disease; and contextual factors that influence intervention effectiveness. Inclusion criteria Participants Communities in Brunei, Cambodia, Indonesia, Laos, Malaysia, Myanmar, the Philippines, Singapore, Thailand and Viet Nam. Types of intervention(s) Non-pharmaceutical, non-vaccine, and community-based surveillance or prevention and control interventions targeting rabies, Nipah virus , dengue, SARS or avian influenza. Types of outcomes Primary outcomes: measures: of infection or disease; secondary outcomes: measures of intervention function. Types of studies Original quantitative studies published in English. Search strategy Databases searched (1980 to 2011): PubMed, CINAHL, ProQuest, EBSCOhost, Web of Science, Science Direct, Cochrane database of systematic reviews, WHOLIS, British Development Library, LILACS, World Bank (East Asia), Asian Development Bank. Methodological quality Two independent reviewers critically appraised studies using standard Joanna Briggs Institute instruments. Disagreements were resolved through discussion. Data extraction A customised tool was used to extract quantitative data on intervention(s), populations, study methods, and primary and secondary outcomes; and qualitative contextual information or narrative evidence about interventions. Data synthesis Data was synthesised in a narrative summary with the aid of tables. Meta-analysis was used to statistically pool quantitative results. Results Fifty-seven studies were included. Vector control interventions using copepods, environmental cleanup and education are effective and sustainable at reducing dengue in rural and urban communities, whilst insecticide spraying is effective in urban outbreak situations. Community-based surveillance interventions can effectively identify avian influenza in backyard flocks, but have not been broadly applied. Outbreak control interventions for Nipah virus and SARS are effective but may not be suitable for ongoing control. Canine vaccination and education is more acceptable than culling, but still fails to reach coverage levels required to effectively control rabies. Contextual factors were identified that influence community engagement with, and ultimately effectiveness of, interventions. Conclusion Despite investment in community-based disease control and surveillance in Southeast Asia, published evidence evaluating interventions is limited in quantity and quality. Nonetheless this review identified a number of effective interventions, and several contextual factors influencing effectiveness. Identification of the best programs will require comparative evidence of effectiveness acceptability, cost-effectiveness and sustainability.
Resumo:
This thesis advances the understanding of the impact of stigma on property values. A case study in Wellington, New Zealand, enabled hedonic modelling and an empirical analysis to determine the impact of the stigma from the high voltage transmission line structure and how long the stigma remained after removal. The results reveal a substantial difference between the discount applied to individual properties while the structure is in place, as compared to the overall increase in neighbourhood value once the structure, which created the stigma, is removed.
Resumo:
Child care centers differ systematically with respect to the quality and quantity of physical activity they provide, suggesting that center-level policies and practices, as well as the center's physical environment, are important influences on children's physical activity behavior. Purpose To summarize and critically evaluate the extant peer-reviewed literature on the influence of child care policy and environment on physical activity in preschool-aged children. Methods A computer database search identified seven relevant studies that were categorized into three broad areas: cross-sectional studies investigating the impact of selected center-level policies and practices on moderate-to-vigorous physical activity (MVPA), studies correlating specific attributes of the outdoor play environment with the level and intensity of MVPA, and studies in which a specific center-level policy or environmental attribute was experimentally manipulated and evaluated for changes in MVPA. Results Staff education and training, as well as staff behavior on the playground, seem to be salient influences on MVPA in preschoolers. Lower playground density (less children per square meter) and the presence of vegetation and open play areas also seem to be positive influences on MVPA. However, not all studies found these attributes to be significant. The availability and quality of portable play equipment, not the amount or type of fixed play equipment, significantly influenced MVPA levels. Conclusions Emerging evidence suggests that several policy and environmental factors contribute to the marked between-center variability in physical activity and sedentary behavior. Intervention studies targeting these factors are thus warranted.
Resumo:
In this paper we propose a method that integrates the no- tion of understandability, as a factor of document relevance, into the evaluation of information retrieval systems for con- sumer health search. We consider the gain-discount evaluation framework (RBP, nDCG, ERR) and propose two understandability-based variants (uRBP) of rank biased precision, characterised by an estimation of understandability based on document readability and by different models of how readability influences user understanding of document content. The proposed uRBP measures are empirically contrasted to RBP by comparing system rankings obtained with each measure. The findings suggest that considering understandability along with topicality in the evaluation of in- formation retrieval systems lead to different claims about systems effectiveness than considering topicality alone.
Resumo:
Transportation construction is substantially different from other construction fields due to widespread use of unit price bidding and competitive contract awarding. Thus, the potential for change orders has been the main source of unbalanced bidding for contractors, which can be described as substantial increases in work quantity or reasonable changes to the initial design provided by the State Highway Agencies (SHAs). It is important to understand the causes of the change orders as cost related issues are the main reason for contract disputes. We have analyzed a large dataset from a major SHA to identify project related and environmental factors that affect the change order costs. The results of the study can be instrumental in assessing the increased costs associated with change orders and better management measures can be taken to mitigate their effects.
Resumo:
An investigation of the construction data management needs of the Florida Department of Transportation (FDOT) with regard to XML standards including development of data dictionary and data mapping. The review of existing XML schemas indicated the need for development of specific XML schemas. XML schemas were developed for all FDOT construction data management processes. Additionally, data entry, approval and data retrieval applications were developed for payroll compliance reporting and pile quantity payment development.
Resumo:
In 2009, the Capital Markets Development Authority (CMDA) - Fiji’s capital market regulator - introduced the Code of Corporate Governance (the Code). The Code is ‘principle-based’ and requires companies listed on the South Pacific Stock Exchange (SPSE) and the financial intermediaries to disclose their compliance with the Code’s principles. While compliance with the Code is mandatory, the nature and extent of disclosure is at the discretion of the complying entities. Agency theory and signalling theory suggest that firms with higher expected levels of agency costs will provide greater levels of voluntary disclosures as signals of strong corporate governance. Thus, the study seeks to test these theories by examining the heterogeneity of corporate governance disclosures by firms listed on SPSE, and determining the characteristics of firms that provide similar levels of disclosures. We conducted a content analysis of corporate governance disclosures on the annual reports of firms from 2008-2012. The study finds that large, non-family owned firms with high levels of shareholder dispersion provide greater quantity and higher quality corporate governance disclosures. For firms that are relatively smaller, family owned and have low levels of shareholder dispersion, the quantity and quality of corporate governance disclosures are much lower. Some of these firms provide boilerplate disclosures with minimal changes in the following years. These findings support the propositions of agency and signalling theory, which suggest that firms with higher separation between agents and principals will provide more voluntary disclosures to reduce expected agency costs transfers. Semi-structured interviews conducted with key stakeholders further reinforce the findings. The interviews also reveal that complying entities positively perceive the introduction of the Code. Furthermore, while compliance with Code brought about additional costs, they believed that most of these costs were minimal and one-off, and the benefits of greater corporate disclosure to improve user decision making outweighed the costs. The study contributes to the literature as it provides insight into the experience of a small capital market with introducing a ‘principle-based’ Code that attempts to encourage corporate governance practices through enhanced disclosure. The study also assists policy makers better understand complying entities’ motivations for compliance and the extent of compliance.
Resumo:
Sleep disruption strongly influences daytime functioning; resultant sleepiness is recognised as a contributing risk-factor for individuals performing critical and dangerous tasks. While the relationship between sleep and sleepiness has been heavily investigated in the vulnerable sub-populations of shift workers and patients with sleep disorders, postpartum women have been comparatively overlooked. Thirty-three healthy, postpartum women recorded every episode of sleep and wake each day during postpartum weeks 6, 12 and 18. Although repeated measures analysis revealed there was no significant difference in the amount of nocturnal sleep and frequency of night-time wakings, there was a significant reduction in sleep disruption, due to fewer minutes of wake after sleep onset. Subjective sleepiness was measured each day using the Karolinska Sleepiness Scale; at the two earlier time points this was significantly correlated with sleep quality but not to sleep quantity. Epworth Sleepiness Scores significantly reduced over time; however, during week 18 over 50% of participants were still experiencing excessive daytime sleepiness (Epworth Sleepiness Score ≥12). Results have implications for health care providers and policy makers. Health care providers designing interventions to address sleepiness in new mothers should take into account the dynamic changes to sleep and sleepiness during this initial postpartum period. Policy makers developing regulations for parental leave entitlements should take into consideration the high prevalence of excessive daytime sleepiness experienced by new mothers, ensuring enough opportunity for daytime sleepiness to diminish to a manageable level prior to reengagement in the workforce.
Resumo:
Monitoring gases for environmental, industrial and agricultural fields is a demanding task that requires long periods of observation, large quantity of sensors, data management, high temporal and spatial resolution, long term stability, recalibration procedures, computational resources, and energy availability. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) are currently representing the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialised gas sensing systems, and offer the possibility of geo-located and time stamp samples. However, these technologies are not fully functional for scientific and commercial applications as their development and availability is limited by a number of factors: the cost of sensors required to cover large areas, their stability over long periods, their power consumption, and the weight of the system to be used on small UAVs. Energy availability is a serious challenge when WSN are deployed in remote areas with difficult access to the grid, while small UAVs are limited by the energy in their reservoir tank or batteries. Another important challenge is the management of data produced by the sensor nodes, requiring large amount of resources to be stored, analysed and displayed after long periods of operation. In response to these challenges, this research proposes the following solutions aiming to improve the availability and development of these technologies for gas sensing monitoring: first, the integration of WSNs and UAVs for environmental gas sensing in order to monitor large volumes at ground and aerial levels with a minimum of sensor nodes for an effective 3D monitoring; second, the use of solar energy as a main power source to allow continuous monitoring; and lastly, the creation of a data management platform to store, analyse and share the information with operators and external users. The principal outcomes of this research are the creation of a gas sensing system suitable for monitoring any kind of gas, which has been installed and tested on CH4 and CO2 in a sensor network (WSN) and on a UAV. The use of the same gas sensing system in a WSN and a UAV reduces significantly the complexity and cost of the application as it allows: a) the standardisation of the signal acquisition and data processing, thereby reducing the required computational resources; b) the standardisation of calibration and operational procedures, reducing systematic errors and complexity; c) the reduction of the weight and energy consumption, leading to an improved power management and weight balance in the case of UAVs; d) the simplification of the sensor node architecture, which is easily replicated in all the nodes. I evaluated two different sensor modules by laboratory, bench, and field tests: a non-dispersive infrared module (NDIR) and a metal-oxide resistive nano-sensor module (MOX nano-sensor). The tests revealed advantages and disadvantages of the two modules when used for static nodes at the ground level and mobile nodes on-board a UAV. Commercial NDIR modules for CO2 have been successfully tested and evaluated in the WSN and on board of the UAV. Their advantage is the precision and stability, but their application is limited to a few gases. The advantages of the MOX nano-sensors are the small size, low weight, low power consumption and their sensitivity to a broad range of gases. However, selectivity is still a concern that needs to be addressed with further studies. An electronic board to interface sensors in a large range of resistivity was successfully designed, created and adapted to operate on ground nodes and on-board UAV. The WSN and UAV created were powered with solar energy in order to facilitate outdoor deployment, data collection and continuous monitoring over large and remote volumes. The gas sensing, solar power, transmission and data management systems of the WSN and UAV were fully evaluated by laboratory, bench and field testing. The methodology created to design, developed, integrate and test these systems was extensively described and experimentally validated. The sampling and transmission capabilities of the WSN and UAV were successfully tested in an emulated mission involving the detection and measurement of CO2 concentrations in a field coming from a contaminant source; the data collected during the mission was transmitted in real time to a central node for data analysis and 3D mapping of the target gas. The major outcome of this research is the accomplishment of the first flight mission, never reported before in the literature, of a solar powered UAV equipped with a CO2 sensing system in conjunction with a network of ground sensor nodes for an effective 3D monitoring of the target gas. A data management platform was created using an external internet server, which manages, stores, and shares the data collected in two web pages, showing statistics and static graph images for internal and external users as requested. The system was bench tested with real data produced by the sensor nodes and the architecture of the platform was widely described and illustrated in order to provide guidance and support on how to replicate the system. In conclusion, the overall results of the project provide guidance on how to create a gas sensing system integrating WSNs and UAVs, how to power the system with solar energy and manage the data produced by the sensor nodes. This system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, zoology, and botanical studies opening the way to an ubiquitous low cost environmental monitoring, which may help to decrease our carbon footprint and to improve the health of the planet.
Resumo:
Austinite (CaZnAsO4⋅OH) is a unique secondary mineral in arsenic-contaminated mine wastes. The infrared and Raman spectroscopies were used to characterize the austenite vibrations. The IR bands at 369, 790 and 416 cm−1 are assigned to the ν2, ν3 and ν4 vibrations of AsO43− unit, respectively. The Raman bands at 814, 779 and 403 cm−1 correspond to the ν1, ν3 and ν4 vibrations of AsO43− unit respectively. The sharp bands at 3265 cm−1 for IR and 3270 cm−1 both reveals that the structural hydroxyl units exist in the austenite structure. The IR and Raman spectra both show that some SO4 units isomorphically replace AsO4 in austinite. X-ray single crystal diffraction provides the arrangement of each atom in the mineral structure, and also confirms that the conclusions made from the vibrational spectra. Micro-powder diffraction was used to confirm our mineral identification due to the small quantity of the austenite crystals.
Resumo:
In many organizations, e-mail is an effective and dominant workplace application tool; however, research identifying its role as a potential workplace stressor remains limited. Utilizing the Transactional Model of Stress (Lazarus & Folkman, 1984), 215 full-time administrative and academic staff at a university were surveyed about workplace e-mail. The aim was to study the effects of potential e-mail stressors on emotional exhaustion as mediated and moderated by person and situation variables. Results indicated that 2 distinct e-mail stressors—high quantity and poor quality (in terms of high emotionality and ambiguity) of workplace e-mail—were associated both with stress appraisals (e-mail overload and e-mail uncertainty) and with emotional exhaustion. Furthermore, the effects of the 2 e-mail stressors on emotional exhaustion were mediated by appraised e-mail overload. Perceived normative response pressure—a relevant aspect of the specific work environment—added to the explanation of emotional exhaustion and accentuated the positive effect of e-mail ambiguity on emotional exhaustion, although effects involving normative response pressure were not explained by the stress appraisals.
Resumo:
The conventional measures of benchmarking focus mainly on the water produced or water delivered, and ignore the service quality, and as a result the 'low-cost and low-quality' utilities are rated as efficient units. Benchmarking must credit utilities for improvements in service delivery. This study measures the performance of 20 urban water utilities using data from an Asian Development Bank survey of Indian water utilities in 2005. It applies data envelopment analysis to measure the performance of utilities. The results reveal that incorporation of a quality dimension into the analysis significantly increases the average performance of utilities. The difference between conventional quantity-based measures and quality-adjusted estimates implies that there are significant opportunity costs of maintaining the quality of services in water delivery.
Resumo:
Objective To describe the quantity and diversity of food and beverage intake in Australian children aged 12–16 months and to determine if the amount and type of milk intake is associated with dietary diversity. Methods Mothers participating in the NOURISH and South Australian Infant Dietary Intake (SAIDI) studies completed a single 24-hour recall of their child's food intake, when children (n=551) were aged 12–16 months. The relationship between dietary diversity and intake of cow's milk, formula or breastmilk was examined using one-way ANOVA. Results Dairy and cereal were the most commonly consumed food groups and the greatest contributors to daily energy intake. Most children ate fruit (87%) and vegetables (77%) on the day of the 24-hour recall while 91% ate discretionary items. Half the sample ate less than 30 g of meat/alternatives. A quarter of the children were breastfeeding while formula was consumed by 32% of the sample, providing 29% of daily energy intake. Lower dietary diversity was associated with increased formula intake. Conclusions The quality of dietary intake in this group of young children is highly variable. Most toddlers were consuming a diverse diet, though almost all ate discretionary items. The amount and type of meat/alternatives consumed was poor. Implications Health professionals should advise parents to offer iron-rich foods, while limiting discretionary choices and use of formula at an age critical in the development of long-term food preferences.
Resumo:
Stormwater pollution is linked to stream ecosystem degradation. In predicting stormwater pollution, various types of modelling techniques are adopted. The accuracy of predictions provided by these models depends on the data quality, appropriate estimation of model parameters, and the validation undertaken. It is well understood that available water quality datasets in urban areas span only relatively short time scales unlike water quantity data, which limits the applicability of the developed models in engineering and ecological assessment of urban waterways. This paper presents the application of leave-one-out (LOO) and Monte Carlo cross validation (MCCV) procedures in a Monte Carlo framework for the validation and estimation of uncertainty associated with pollutant wash-off when models are developed using a limited dataset. It was found that the application of MCCV is likely to result in a more realistic measure of model coefficients than LOO. Most importantly, MCCV and LOO were found to be effective in model validation when dealing with a small sample size which hinders detailed model validation and can undermine the effectiveness of stormwater quality management strategies.
Resumo:
A major challenge in studying coupled groundwater and surface-water interactions arises from the considerable difference in the response time scales of groundwater and surface-water systems affected by external forcings. Although coupled models representing the interaction of groundwater and surface-water systems have been studied for over a century, most have focused on groundwater quantity or quality issues rather than response time. In this study, we present an analytical framework, based on the concept of mean action time (MAT), to estimate the time scale required for groundwater systems to respond to changes in surface-water conditions. MAT can be used to estimate the transient response time scale by analyzing the governing mathematical model. This framework does not require any form of transient solution (either numerical or analytical) to the governing equation, yet it provides a closed form mathematical relationship for the response time as a function of the aquifer geometry, boundary conditions, and flow parameters. Our analysis indicates that aquifer systems have three fundamental time scales: (i) a time scale that depends on the intrinsic properties of the aquifer; (ii) a time scale that depends on the intrinsic properties of the boundary condition, and; (iii) a time scale that depends on the properties of the entire system. We discuss two practical scenarios where MAT estimates provide useful insights and we test the MAT predictions using new laboratory-scale experimental data sets.