255 resultados para plate metal
Resumo:
Heteroleptic complexes of the type \[RuL2L′](PF6)2 (L, L′ = combinations of 1,10-phenanthroline (phen) and 2,2′-bipyridine (bipy)) were found to cocrystallize with \[Ni(phen)3](PF6)2 to produce cocrystals of \[Ni(phen)3]x\[RuL2L′]1–x(PF6)2. In this report we show that the ability of the complexes to cocrystallize is influenced by the number of common ligands between complexes in solution. Supramolecular selection is a phenomenon caused by molecular recognition through which cocrystals can grow from the same solution but contain different ratios of the molecular components. It was found that systems where L = phen displayed less supramolecular selection than systems where L = bipy. With increasing supramolecular selection, the composition of cocrystals was found to vary significantly from the initial relative concentration in the cocrystallizing solution, and therefore it was increasingly difficult to control the final composition of the resultant cocrystals. Consequently, modulation of concentration-dependent properties such as phase was also found to be less predictable with increasing supramolecular selection. Notwithstanding the complication afforded by the presence of supramolecular selection, our results reaffirm the robustness of the \[M(phen)3](PF6)2 structure because it was maintained even when ca. 90% of the complexes in the cocrystals were \[Ru(phen)(bipy)2](PF6)2, which in its pure form is not isomorphous with \[M(phen)3](PF6)2. Experiments between complexes without common ligands, i.e., \[Ru(bipy)3](PF6)2 cocrystallized with \[Ni(phen)3](PF6)2, were found to approach the limit to which molecular recognition processes can be confused into cocrystallizing different molecules to form single cocrystals. For these systems the result was the formation of block-shaped crystals skewered by a needle-shaped crystals.
Resumo:
Hot metal carriers (HMCs) are large forklift-type vehicles used to move molten metal in aluminum smelters. This paper reports on field experiments that demonstrate that HMCs can operate autonomously and in particular can use vision as a primary sensor to locate the load of aluminum. We present our complete system but focus on the vision system elements and also detail experiments demonstrating reliable operation of the materials handling task. Two key experiments are described, lasting 2 and 5 h, in which the HMC traveled 15 km in total and handled the load 80 times.
Resumo:
Solvothermally synthesized Ga2O3 nanoparticles are incorporated into liquid metal/metal oxide (LM/MO) frameworks in order to form enhanced photocatalytic systems. The LM/MO frameworks, both with and without incorporated Ga2O3 nanoparticles, show photocatalytic activitydue to a plasmonic effect where performance is related to the loading of Ga2O3 nanoparticles. Optimum photocatalytic efficiency is obtained with 1 wt% incorporation of Ga2O3 nanoparticles. This can be attributed to the sub-bandgap states of LM/MO frameworks, contributing to pseudo-ohmic contacts which reduce the free carrier injection barrier to Ga2O3.
Resumo:
This paper reports work on the automation of a hot metal carrier, which is a 20 tonne forklift-type vehicle used to move molten metal in aluminium smelters. To achieve efficient vehicle operation, issues of autonomous navigation and materials handling must be addressed. We present our complete system and experiments demonstrating reliable operation. One of the most significant experiments was five-hours of continuous operation where the vehicle travelled over 8 km and conducted 60 load handling operations. Finally, an experiment where the vehicle and autonomous operation were supervised from the other side of the world via a satellite phone network are described.
Resumo:
Nowadays, demand for automated Gas metal arc welding (GMAW) is growing and consequently need for intelligent systems is increased to ensure the accuracy of the procedure. To date, welding pool geometry has been the most used factor in quality assessment of intelligent welding systems. But, it has recently been found that Mahalanobis Distance (MD) not only can be used for this purpose but also is more efficient. In the present paper, Artificial Neural Networks (ANN) has been used for prediction of MD parameter. However, advantages and disadvantages of other methods have been discussed. The Levenberg–Marquardt algorithm was found to be the most effective algorithm for GMAW process. It is known that the number of neurons plays an important role in optimal network design. In this work, using trial and error method, it has been found that 30 is the optimal number of neurons. The model has been investigated with different number of layers in Multilayer Perceptron (MLP) architecture and has been shown that for the aim of this work the optimal result is obtained when using MLP with one layer. Robustness of the system has been evaluated by adding noise into the input data and studying the effect of the noise in prediction capability of the network. The experiments for this study were conducted in an automated GMAW setup that was integrated with data acquisition system and prepared in a laboratory for welding of steel plate with 12 mm in thickness. The accuracy of the network was evaluated by Root Mean Squared (RMS) error between the measured and the estimated values. The low error value (about 0.008) reflects the good accuracy of the model. Also the comparison of the predicted results by ANN and the test data set showed very good agreement that reveals the predictive power of the model. Therefore, the ANN model offered in here for GMA welding process can be used effectively for prediction goals.
Resumo:
It is rare to find an anthology that realizes the possibilities of the form. We tend to regard our edited collections as lesser siblings, and forget their special value. But at times, a subject seems to require an edited collection much more than it does a classic monograph. So it is with the subject showcased here, which concerns the global circulation, performance and consumption of heavy metal. This is a relatively new and emerging body of work, hitherto scattered disparately in the broader popular music studies, but quickly gaining status as a “studies” with the establishment of a global conference, a journal, and publication of this anthology, all in recent years. Metal Rules the Globe took the editors’ a decade to compile. That they have thought deeply about how they want the collection to speak shows through in the book’s thoughtful arrangement and design, and in the way in which they draw on the contributions herein to develop for the field a research agenda that will take it forward...
Resumo:
This paper reports work involved with the automation of a Hot Metal Carrier — a 20 tonne forklift-type vehicle used to move molten metal in aluminium smelters. To achieve efficient vehicle operation, issues of autonomous navigation and materials handling must be addressed. We present our complete system and experiments demontrating reliable operation. One of the most significant experiments was five-hours of continuous operation where the vehicle travelled over 8 km and conducted 60 load handling operations. We also describe an experiment where the vehicle and autonomous operation were supervised from the other side of the world via a satellite phone network.
Resumo:
Various types of layered double hydroxides, a type of clay, were synthesised. They were then electrochemically tested to determine whether the samples would be suitable to store energy as supercapacitors. A manganese aluminium layered double hydroxide was electrochemically tested for the first time and found to have a large capacitance.
Resumo:
The structures of the isomorphous potassium and rubidium polymeric coordination complexes with 4-nitrobenzoic acid, poly[mu2-aqua-aqua-mu3-(4-nitrobenzoato)-potassium], [K(C7H4N2O2)(H2O)2]n, (I) and poly[mu3-aqua-aqua-mu5-(4-nitrobenzoato)-rubidium], [Rb(C7H4N2O2)(H2O)2]n, (II) have been determined. In (I) the very distorted KO6 coordination sphere about the K+ centres in the repeat unit comprise two bridging nitro O-atom donors, a single bridging carboxyl O-atom donor and two water molecules, one of which is bridging. In the the Rb complex (II), the same basic MO6 coordination is found in the repeat unit but is expanded to RbO9 through a slight increase in the accepted Rb-O bond length range and includes an additional Rb-O(carboxyl) bond, completing a bidentate O,O'-chelate interaction, and additional bridging Rb-Onitro) and Rb-O(water) bonds. The comparative K-O and Rb-O bond length ranges are 2.738(3)-3.002(3)Ang. (I) and 2.884(2)-3.182(2)Ang. (II). The structure of (II) is also isomorphous as well as isostructural with the known structure of the nine-coordinate caesium 4-nitrobenzoate analogue, [Cs(C7H4N2O~2~)(H~2~O)2]n, (III) in which the Cs---O range is 3.047(4)-3.338(4)Ang. In all three complexes, common basic polymeric extensions are found, including two different centrosymmetric bridging interactions through both water and nitro groups as well as extensions along c through the p-related carboxyl group, giving a two-dimensional structure in (I). In (II) and (III), three-dimensional structures are generated through additional bridges through the nitro and water O-atoms. In all structures, both water molecules are involved in similar intra-polymer O-H...O hydrogen-bonding interactions to both carboxyl as well as water O-atom acceptors. A comparison of the varied coordination behaviour of the full set of Li-Cs salts with 4-nitrobenzoic acid is also made.
Resumo:
A facile route to prepare catalystically active materials from a galinstan liquid metal alloy is introduced. Sonicating liquid galinstan in alkaline solution or treating it in reducing media results in the creation of solid In/Sn rich microspheres that show catalytic activity toward both potassium ferricyanide and 4-nitrophenol reduction.
Resumo:
In this study, effects of concentrations of Cu(II), Zn(II) and Sn(II) ions in the electrolytic bath solution on the properties of electrochemically deposited CuZnSn (CZT) films were investigated. Study of the composition of a CZT film has shown that the metallic content (relative atomic ratio) in the film increased linearly with increase in the metal ion concentration. It is the first time that the relationship of the compositions of the alloy phases in the co-electrodeposited CZT film with the concentration of metal ions has been revealed. The results have confirmed that the formation and content of Cu6Sn5 and Cu5Zn8 alloy phases in the film were directly controlled by the concentration of Cu(II). SEM measurements have shown that Sn(II) has significant impact on film morphology, which became more porous as a result of the larger nucleation size of tin. The changes in the surface properties of the films was also confirmed by chronoamperometry characteristic (i–t) deposition curves. By optimization of metal ion concentrations in the electrolyte solution, a copper-poor and zinc-rich kesterite Cu2ZnSnS4 (CZTS) film was synthesized by the sulfurization of the deposited CZT film. The solar cell with the CZTS film showed an energy conversion efficiency of 2.15% under the illumination intensity of 100 mW cm 2.
Resumo:
Background Context There are differences in definitions of end plate lesions (EPLs), often referred to as Schmorl’s nodes, that may, to some extent, account for the large range of reported prevalence (3.8 to 76%). Purpose To develop a technique to measure the size, prevalence and location of EPLs in a consistent manner. Study Design/Setting This study proposed a method using a detection algorithm which was applied to five adolescent females (average age 15.1 years, range 13.0 to 19.2 years) with idiopathic scoliosis (average major Cobb angle 60°, range 55 to 67°). Methods Existing low-dose, computed tomography scans were segmented semi-automatically to extract 3D morphology of each vertebral endplate. Any remaining attachments to the posterior elements of adjacent vertebrae or endplates were then manually sectioned. An automatic algorithm was used to determine the presence and position of EPLs. Results EPLs were identified in 15 of the 170 (8.8%) endplates analysed with an average depth of 3.1mm. 11/15 of the EPLs were seen in the lumbar spine. The algorithm was found to be most sensitive to changes in the minimum EPL gradient at the edges of the EPL. Conclusions This study describes an imaging analysis technique for consistent measurement of the prevalence, location and size of EPLs. The technique can be used to analyse large populations without observer errors in EPL definitions.
Resumo:
INTRODUCTION There is a large range in the reported prevalence of end plate lesions (EPLs), sometimes referred to as Schmorl's nodes in the general population (3.8-76%). One possible reason for this large range is the differences in definitions used by authors. Previous research has suggested that EPLs may potentially be a primary disturbance of growth plates that leads to the onset of scoliosis. The aim of this study was to develop a technique to measure the size, prevalence and location of EPLs on Computed Tomography (CT) images of scoliosis patients in a consistent manner. METHODS A detection algorithm was developed and applied to measure EPLs for five adolescent females with idiopathic scoliosis (average age 15.1 years, average major Cobb 60°). In this algorithm, the EPL definition was based on the lesion depth, the distance from the edge of the vertebral body and the gradient of the lesion edge. Existing low-dose, CT scans of the patients' spines were segmented semi-automatically to extract 3D vertebral endplate morphology. Manual sectioning of any attachments between posterior elements of adjacent vertebrae and, if necessary, endplates was carried out before the automatic algorithm was used to determine the presence and position of EPLs. RESULTS EPLs were identified in 15 of the 170 (8.8%) endplates analysed with an average depth of 3.1mm. 73% of the EPLs were seen in the lumbar spines (11/15). A sensitivity study demonstrated that the algorithm was most sensitive to changes in the minimum gradient required at the lesion edge. CONCLUSION An imaging analysis technique for consistent measurement of the prevalence, location and size of EPLs on CT images has been developed. Although the technique was tested on scoliosis patients, it can be used to analyse other populations without observer errors in EPL definitions.
Resumo:
Recent advances in direct-use plasmonic-metal nanoparticles (NPs) as photocatalysts to drive organic synthesis reactions under visible-light irradiation have attracted great interest. Plasmonic-metal NPs are characterized by their strong interaction with visible light through excitation of the localized surface plasmon resonance (LSPR). Herein, we review recent developments in direct photocatalysis using plasmonic-metal NPs and their applications. We focus on the role played by the LSPR of the metal NPs in catalyzing organic transformations and, more broadly, the role that light irradiation plays in catalyzing the reactions. Through this, the reaction mechanisms that these light-excited energetic electrons promote will be highlighted. This review will be of particular interest to researchers who are designing and fabricating new plasmonic-metal NP photocatalysts by identifying important reaction mechanisms that occur through light irradiation.