347 resultados para object recognition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates advanced channel compensation techniques for the purpose of improving i-vector speaker verification performance in the presence of high intersession variability using the NIST 2008 and 2010 SRE corpora. The performance of four channel compensation techniques: (a) weighted maximum margin criterion (WMMC), (b) source-normalized WMMC (SN-WMMC), (c) weighted linear discriminant analysis (WLDA), and; (d) source-normalized WLDA (SN-WLDA) have been investigated. We show that, by extracting the discriminatory information between pairs of speakers as well as capturing the source variation information in the development i-vector space, the SN-WLDA based cosine similarity scoring (CSS) i-vector system is shown to provide over 20% improvement in EER for NIST 2008 interview and microphone verification and over 10% improvement in EER for NIST 2008 telephone verification, when compared to SN-LDA based CSS i-vector system. Further, score-level fusion techniques are analyzed to combine the best channel compensation approaches, to provide over 8% improvement in DCF over the best single approach, (SN-WLDA), for NIST 2008 interview/ telephone enrolment-verification condition. Finally, we demonstrate that the improvements found in the context of CSS also generalize to state-of-the-art GPLDA with up to 14% relative improvement in EER for NIST SRE 2010 interview and microphone verification and over 7% relative improvement in EER for NIST SRE 2010 telephone verification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Odours emitted by flowers are complex blends of volatile compounds. These odours are learnt by flower-visiting insect species, improving their recognition of rewarding flowers and thus foraging efficiency. We investigated the flexibility of floral odour learning by testing whether adult moths recognize single compounds common to flowers on which they forage. Dual choice preference tests on Helicoverpa armigera moths allowed free flying moths to forage on one of three flower species; Argyranthemum frutescens (federation daisy), Cajanus cajan (pigeonpea) or Nicotiana tabacum (tobacco). Results showed that, (i) a benzenoid (phenylacetaldehyde) and a monoterpene (linalool) were subsequently recognized after visits to flowers that emitted these volatile constituents, (ii) in a preference test, other monoterpenes in the flowers' odour did not affect the moths' ability to recognize the monoterpene linalool and (iii) relative preferences for two volatiles changed after foraging experience on a single flower species that emitted both volatiles. The importance of using free flying insects and real flowers to understand the mechanisms involved in floral odour learning in nature are discussed in the context of our findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a segmentation pipeline that fuses colour and depth information to automatically separate objects of interest in video sequences captured from a quadcopter. Many approaches assume that cameras are static with known position, a condition which cannot be preserved in most outdoor robotic applications. In this study, the authors compute depth information and camera positions from a monocular video sequence using structure from motion and use this information as an additional cue to colour for accurate segmentation. The authors model the problem similarly to standard segmentation routines as a Markov random field and perform the segmentation using graph cuts optimisation. Manual intervention is minimised and is only required to determine pixel seeds in the first frame which are then automatically reprojected into the remaining frames of the sequence. The authors also describe an automated method to adjust the relative weights for colour and depth according to their discriminative properties in each frame. Experimental results are presented for two video sequences captured using a quadcopter. The quality of the segmentation is compared to a ground truth and other state-of-the-art methods with consistently accurate results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present an unsupervised graph cut based object segmentation method using 3D information provided by Structure from Motion (SFM), called Grab- CutSFM. Rather than focusing on the segmentation problem using a trained model or human intervention, our approach aims to achieve meaningful segmentation autonomously with direct application to vision based robotics. Generally, object (foreground) and background have certain discriminative geometric information in 3D space. By exploring the 3D information from multiple views, our proposed method can segment potential objects correctly and automatically compared to conventional unsupervised segmentation using only 2D visual cues. Experiments with real video data collected from indoor and outdoor environments verify the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we use the algorithm SeqSLAM to address the question, how little and what quality of visual information is needed to localize along a familiar route? We conduct a comprehensive investigation of place recognition performance on seven datasets while varying image resolution (primarily 1 to 512 pixel images), pixel bit depth, field of view, motion blur, image compression and matching sequence length. Results confirm that place recognition using single images or short image sequences is poor, but improves to match or exceed current benchmarks as the matching sequence length increases. We then present place recognition results from two experiments where low-quality imagery is directly caused by sensor limitations; in one, place recognition is achieved along an unlit mountain road by using noisy, long-exposure blurred images, and in the other, two single pixel light sensors are used to localize in an indoor environment. We also show failure modes caused by pose variance and sequence aliasing, and discuss ways in which they may be overcome. By showing how place recognition along a route is feasible even with severely degraded image sequences, we hope to provoke a re-examination of how we develop and test future localization and mapping systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncooperative iris identification systems at a distance suffer from poor resolution of the acquired iris images, which significantly degrades iris recognition performance. Super-resolution techniques have been employed to enhance the resolution of iris images and improve the recognition performance. However, most existing super-resolution approaches proposed for the iris biometric super-resolve pixel intensity values, rather than the actual features used for recognition. This paper thoroughly investigates transferring super-resolution of iris images from the intensity domain to the feature domain. By directly super-resolving only the features essential for recognition, and by incorporating domain specific information from iris models, improved recognition performance compared to pixel domain super-resolution can be achieved. A framework for applying super-resolution to nonlinear features in the feature-domain is proposed. Based on this framework, a novel feature-domain super-resolution approach for the iris biometric employing 2D Gabor phase-quadrant features is proposed. The approach is shown to outperform its pixel domain counterpart, as well as other feature domain super-resolution approaches and fusion techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recognition and enforcement of foreign judgments is an aspect of private international law, and concerns situations where a successful party to litigation seeks to rely on a judgment obtained in one court, in a court in another jurisdiction. The most common example where the recognition and enforcement of foreign judgments may arise is where a party who has obtained a favourable judgment in one state or country may seek to recognise and enforce the judgment in another state or country. This occurs because there is no sufficient asset in the state or country where the judgment was rendered to satisfy that judgment. As technological advancements in communications over vast geographical distances have improved exponentially in recent years, there has been an increase in cross-border transactions, as well as litigation arising from these transactions. As a result, the recognition and enforcement of foreign judgments is of increasing importance, since a party who has obtained a judgment in cross-border litigation may wish to recognise and enforce the judgment in another state or country, where the defendant’s assets may be located without having to re-litigate substantive issues that have already been resolved in another court. The purpose of the study is to examine whether the current state of laws for the recognition and enforcement of foreign judgments in Australia, the United States and the European Community are in line with modern-commercial needs. The study is conducted by weighing two competing objectives between the notion of finality of litigation, which encourages courts to recognise and enforce judgments foreign to them, on the one hand, and the adequacy of protection to safeguard the recognition and enforcement proceedings, so that there would be no injustice or unfairness if a foreign judgment is recognised and enforced, on the other. The findings of the study are as follows. In both Australia and the United States, there is a different approach concerning the recognition and enforcement of judgments rendered by courts interstate or in a foreign country. In order to maintain a single and integrated nation, there are constitutional and legislative requirements authorising courts to give conclusive effects to interstate judgments. In contrast, if the recognition and enforcement actions involve judgments rendered by a foreign country’s court, an Australian or a United States court will not recognise and enforce the foreign judgment unless the judgment has satisfied a number of requirements and does not fall under any of the exceptions to justify its non-recognition and non-enforcement. In the European Community, the Brussels I Regulation which governs the recognition and enforcement of judgments among European Union Member States has created a scheme, whereby there is only a minimal requirement that needs to be satisfied for the purposes of recognition and enforcement. Moreover, a judgment that is rendered by a Member State and based on any of the jurisdictional bases set forth in the Brussels I Regulation is entitled to be recognised and enforced in another Member State without further review of its underlying jurisdictional basis. However, there are concerns as to the adequacy of protection available under the Brussels I Regulation to safeguard the judgment-enforcing Member States, as well as those against whom recognition or enforcement is sought. This dissertation concludes by making two recommendations aimed at improving the means by which foreign judgments are recognised and enforced in the selected jurisdictions. The first is for the law in both Australia and the United States to undergo reform, including: adopting the real and substantial connection test as the new jurisdictional basis for the purposes of recognition and enforcement; liberalising the existing defences to safeguard the application of the real and substantial connection test; extending the application of the Foreign Judgments Act 1991 (Cth) in Australia to include at least its important trading partners; and implementing a federal statutory scheme in the United States to govern the recognition and enforcement of foreign judgments. The second recommendation is to introduce a convention on jurisdiction and the recognition and enforcement of foreign judgments. The convention will be a convention double, which provides uniform standards for the rules of jurisdiction a court in a contracting state must exercise when rendering a judgment and a set of provisions for the recognition and enforcement of resulting judgments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS Metabolomics is comprehensive analysis of low-molecular-weight endogenous metabolites in a biological sample. It could enable mapping of perturbations of early biochemical changes in diseases and hence provide an opportunity to develop predictive biomarkers that could provide valuable insights into the mechanisms of diseases. The aim of this study was to elucidate the changes in endogenous metabolites and to phenotype the metabolic profiling of d-galactosamine (GalN)-inducing acute hepatitis in rats by UPLC-ESI MS. METHODS The systemic biochemical actions of GalN administration (ip, 400 mg/kg) have been investigated in male wistar rats using conventional clinical chemistry, liver histopathology and metabolomic analysis of UPLC- ESI MS of urine. The urine was collected predose (-24 to 0 h) and 0-24, 24-48, 48-72, 72-96 h post-dose. Mass spectrometry of the urine was analysed visually and via conjunction with multivariate data analysis. RESULTS Results demonstrated that there was a time-dependent biochemical effect of GalN dosed on the levels of a range of low-molecular-weight metabolites in urine, which was correlated with developing phase of the GalN-inducing acute hepatitis. Urinary excretion of beta-hydroxybutanoic acid and citric acid was decreased following GalN dosing, whereas that of glycocholic acid, indole-3-acetic acid, sphinganine, n-acetyl-l-phenylalanine, cholic acid and creatinine excretion was increased, which suggests that several key metabolic pathways such as energy metabolism, lipid metabolism and amino acid metabolism were perturbed by GalN. CONCLUSION This metabolomic investigation demonstrates that this robust non-invasive tool offers insight into the metabolic states of diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we explore the effectiveness of patch-based gradient feature extraction methods when applied to appearance-based gait recognition. Extending existing popular feature extraction methods such as HOG and LDP, we propose a novel technique which we term the Histogram of Weighted Local Directions (HWLD). These 3 methods are applied to gait recognition using the GEI feature, with classification performed using SRC. Evaluations on the CASIA and OULP datasets show significant improvements using these patch-based methods over existing implementations, with the proposed method achieving the highest recognition rate for the respective datasets. In addition, the HWLD can easily be extended to 3D, which we demonstrate using the GEV feature on the DGD dataset, observing improvements in performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A significant amount of speech is typically required for speaker verification system development and evaluation, especially in the presence of large intersession variability. This paper introduces a source and utterance duration normalized linear discriminant analysis (SUN-LDA) approaches to compensate session variability in short-utterance i-vector speaker verification systems. Two variations of SUN-LDA are proposed where normalization techniques are used to capture source variation from both short and full-length development i-vectors, one based upon pooling (SUN-LDA-pooled) and the other on concatenation (SUN-LDA-concat) across the duration and source-dependent session variation. Both the SUN-LDA-pooled and SUN-LDA-concat techniques are shown to provide improvement over traditional LDA on NIST 08 truncated 10sec-10sec evaluation conditions, with the highest improvement obtained with the SUN-LDA-concat technique achieving a relative improvement of 8% in EER for mis-matched conditions and over 3% for matched conditions over traditional LDA approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submission recommended addition of a new 'self-enacting' preamble and enacting words to the Commownealth Constitution, and replacement of the 'race power' by a series of more specific powers relating to the recognition of native title and laws of the indigenous people.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automated crowd counting has become an active field of computer vision research in recent years. Existing approaches are scene-specific, as they are designed to operate in the single camera viewpoint that was used to train the system. Real world camera networks often span multiple viewpoints within a facility, including many regions of overlap. This paper proposes a novel scene invariant crowd counting algorithm that is designed to operate across multiple cameras. The approach uses camera calibration to normalise features between viewpoints and to compensate for regions of overlap. This compensation is performed by constructing an 'overlap map' which provides a measure of how much an object at one location is visible within other viewpoints. An investigation into the suitability of various feature types and regression models for scene invariant crowd counting is also conducted. The features investigated include object size, shape, edges and keypoints. The regression models evaluated include neural networks, K-nearest neighbours, linear and Gaussian process regresion. Our experiments demonstrate that accurate crowd counting was achieved across seven benchmark datasets, with optimal performance observed when all features were used and when Gaussian process regression was used. The combination of scene invariance and multi camera crowd counting is evaluated by training the system on footage obtained from the QUT camera network and testing it on three cameras from the PETS 2009 database. Highly accurate crowd counting was observed with a mean relative error of less than 10%. Our approach enables a pre-trained system to be deployed on a new environment without any additional training, bringing the field one step closer toward a 'plug and play' system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raven and Song Scope are two automated sound anal-ysis tools based on machine learning technique for en-vironmental monitoring. Many research works have been conducted upon them, however, no or rare explo-ration mentions about the performance and comparison between them. This paper investigates the comparisons from six aspects: theory, software interface, ease of use, detection targets, detection accuracy, and potential application. Through deep exploration one critical gap is identified that there is a lack of approach to detect both syllables and call structures, since Raven only aims to detect syllables while Song Scope targets call structures. Therefore, a Timed Probabilistic Automata (TPA) system is proposed which separates syllables first and clusters them into complex structures after.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental part of many authentication protocols which authenticate a party to a human involves the human recognizing or otherwise processing a message received from the party. Examples include typical implementations of Verified by Visa in which a message, previously stored by the human at a bank, is sent by the bank to the human to authenticate the bank to the human; or the expectation that humans will recognize or verify an extended validation certificate in a HTTPS context. This paper presents general definitions and building blocks for the modelling and analysis of human recognition in authentication protocols, allowing the creation of proofs for protocols which include humans. We cover both generalized trawling and human-specific targeted attacks. As examples of the range of uses of our construction, we use the model presented in this paper to prove the security of a mutual authentication login protocol and a human-assisted device pairing protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conservation of free-ranging cheetah (Acinonyx jubatus) populations is multi faceted and needs to be addressed from an ecological, biological and management perspective. There is a wealth of published research, each focusing on a particular aspect of cheetah conservation. Identifying the most important factors, making sense of various (and sometimes contrasting) findings, and taking decisions when little or no empirical data is available, are everyday challenges facing conservationists. Bayesian networks (BN) provide a statistical modeling framework that enables analysis and integration of information addressing different aspects of conservation. There has been an increased interest in the use of BNs to model conservation issues, however the development of more sophisticated BNs, utilizing object-oriented (OO) features, is still at the frontier of ecological research. We describe an integrated, parallel modeling process followed during a BN modeling workshop held in Namibia to combine expert knowledge and data about free-ranging cheetahs. The aim of the workshop was to obtain a more comprehensive view of the current viability of the free-ranging cheetah population in Namibia, and to predict the effect different scenarios may have on the future viability of this free-ranging cheetah population. Furthermore, a complementary aim was to identify influential parameters of the model to more effectively target those parameters having the greatest impact on population viability. The BN was developed by aggregating diverse perspectives from local and independent scientists, agents from the national ministry, conservation agency members and local fieldworkers. This integrated BN approach facilitates OO modeling in a multi-expert context which lends itself to a series of integrated, yet independent, subnetworks describing different scientific and management components. We created three subnetworks in parallel: a biological, ecological and human factors network, which were then combined to create a complete representation of free-ranging cheetah population viability. Such OOBNs have widespread relevance to the effective and targeted conservation management of vulnerable and endangered species.