244 resultados para mind mapping
Resumo:
Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same region.
Resumo:
description and analysis of geographically indexed health data with respect to demographic, environmental, behavioural, socioeconomic, genetic, and infectious risk factors (Elliott andWartenberg 2004). Disease maps can be useful for estimating relative risk; ecological analyses, incorporating area and/or individual-level covariates; or cluster analyses (Lawson 2009). As aggregated data are often more readily available, one common method of mapping disease is to aggregate the counts of disease at some geographical areal level, and present them as choropleth maps (Devesa et al. 1999; Population Health Division 2006). Therefore, this chapter will focus exclusively on methods appropriate for areal data...
Resumo:
It has been nearly 25 years since the problems associated with passive learning in large undergraduate classes were first established by McDermott (1991). STEM education, for example North Carolina State University’s SCALE-UP project, has subsequently been influenced by some unique aspects of design studio education. While there are now many institutions applying SCALE-UP or similar approaches to enable lively interaction, enhanced learning, increased student engagement, and to teach many different content areas to classes of all sizes, nearly all of these have remained in the STEM fields (Beichner, 2008). Architectural education, although originally at the forefront of this field, has arguably been left behind. Architectural practice is undergoing significant change, globally. Access to new technology and the development of specialised architectural documentation software has scaffolded new building procurement methods and allowed consultant teams to work more collaboratively, efficiently and even across different time zones. Up until recently, the spatial arrangements, pedagogical approaches, and project work outcomes in the architectural design studio, have not been dissimilar to its inception. It is not possible to keep operating architectural design studios the same way that they have for the past two hundred years, with this new injection of high-end technology and personal mobile Wi-Fi enabled devices. Employing a grounded theory methodology, this study reviews the current provision of architectural design learning terrains across a range of tertiary institutions, in Australia. Some suggestions are provided for how these spaces could be modified to address the changing nature of the profession, and implications for how these changes may impact the design of future SCALE-UP type spaces outside of the discipline of architecture, are also explored.
Resumo:
Species distribution modelling (SDM) typically analyses species’ presence together with some form of absence information. Ideally absences comprise observations or are inferred from comprehensive sampling. When such information is not available, then pseudo-absences are often generated from the background locations within the study region of interest containing the presences, or else absence is implied through the comparison of presences to the whole study region, e.g. as is the case in Maximum Entropy (MaxEnt) or Poisson point process modelling. However, the choice of which absence information to include can be both challenging and highly influential on SDM predictions (e.g. Oksanen and Minchin, 2002). In practice, the use of pseudo- or implied absences often leads to an imbalance where absences far outnumber presences. This leaves analysis highly susceptible to ‘naughty-noughts’: absences that occur beyond the envelope of the species, which can exert strong influence on the model and its predictions (Austin and Meyers, 1996). Also known as ‘excess zeros’, naughty noughts can be estimated via an overall proportion in simple hurdle or mixture models (Martin et al., 2005). However, absences, especially those that occur beyond the species envelope, can often be more diverse than presences. Here we consider an extension to excess zero models. The two-staged approach first exploits the compartmentalisation provided by classification trees (CTs) (as in O’Leary, 2008) to identify multiple sources of naughty noughts and simultaneously delineate several species envelopes. Then SDMs can be fit separately within each envelope, and for this stage, we examine both CTs (as in Falk et al., 2014) and the popular MaxEnt (Elith et al., 2006). We introduce a wider range of model performance measures to improve treatment of naughty noughts in SDM. We retain an overall measure of model performance, the area under the curve (AUC) of the Receiver-Operating Curve (ROC), but focus on its constituent measures of false negative rate (FNR) and false positive rate (FPR), and how these relate to the threshold in the predicted probability of presence that delimits predicted presence from absence. We also propose error rates more relevant to users of predictions: false omission rate (FOR), the chance that a predicted absence corresponds to (and hence wastes) an observed presence, and the false discovery rate (FDR), reflecting those predicted (or potential) presences that correspond to absence. A high FDR may be desirable since it could help target future search efforts, whereas zero or low FOR is desirable since it indicates none of the (often valuable) presences have been ignored in the SDM. For illustration, we chose Bradypus variegatus, a species that has previously been published as an exemplar species for MaxEnt, proposed by Phillips et al. (2006). We used CTs to increasingly refine the species envelope, starting with the whole study region (E0), eliminating more and more potential naughty noughts (E1–E3). When combined with an SDM fit within the species envelope, the best CT SDM had similar AUC and FPR to the best MaxEnt SDM, but otherwise performed better. The FNR and FOR were greatly reduced, suggesting that CTs handle absences better. Interestingly, MaxEnt predictions showed low discriminatory performance, with the most common predicted probability of presence being in the same range (0.00-0.20) for both true absences and presences. In summary, this example shows that SDMs can be improved by introducing an initial hurdle to identify naughty noughts and partition the envelope before applying SDMs. This improvement was barely detectable via AUC and FPR yet visible in FOR, FNR, and the comparison of predicted probability of presence distribution for pres/absence.
Resumo:
The most common causes of urinary tract infections (UTIs) are Gram-negative pathogens such as Escherichia coli; however, Gram-positive organisms including Streptococcus agalactiae, or group B streptococcus (GBS), also cause UTI. In GBS infection, UTI progresses to cystitis once the bacteria colonize bladder, but the host responses triggered in the bladder immediately following infection are largely unknown. Here, we used genome-wide expression profiling to map the bladder transcriptome of GBS UTI in mice infected transurethrally with uropathogenic GBS that was cultured from a 35 year-old women with cystitis. RNA from bladders was applied to Affymetrix Gene-1.0ST microarrays; qRT-PCR was used to analyze selected gene responses identified in array datasets. A surprisingly small significant gene list of 172 genes was identified at 24h; this compared to 2507 genes identified in a side-by-side comparison with uropathogenic E. coli (UPEC). No genes exhibited significantly altered expression at 2h in GBS-infected mice according to arrays despite high bladder bacterial loads at this early time point. The absence of a marked early host response to GBS juxtaposed with broad-based bladder responses activated by UPEC at 2h. Bioinformatics analyses including integrative systems-level network mapping revealed multiple activated biological pathways in the GBS cystitis transcriptome that regulate leukocyte activation, inflammation, apoptosis, and cytokine-chemokine biosynthesis. These findings define a novel, minimalistic type of bladder host response triggered by GBS UTI, which comprises collective antimicrobial pathways that differ dramatically from those activated by UPEC. Overall, this study emphasizes the unique nature of bladder immune activation mechanisms triggered by distinct uropathogens.
Resumo:
This chapter unpacks public institutional integrity concepts through an examination of differential obligations within the global climate regime.
Resumo:
Candidate gene studies have reported CYP19A1 variants to be associated with endometrial cancer and with estradiol (E2) concentrations. We analyzed 2937 single nucleotide polymorphisms (SNPs) in 6608 endometrial cancer cases and 37 925 controls and report the first genome wide-significant association between endometrial cancer and a CYP19A1 SNP (rs727479 in intron 2, P=4.8x10(-11)). SNP rs727479 was also among those most strongly associated with circulating E2 concentrations in 2767 post-menopausal controls (P=7.4x10(-8)). The observed endometrial cancer odds ratio per rs727479 A-allele (1.15, CI=1.11-1.21) is compatible with that predicted by the observed effect on E2 concentrations (1.09, CI=1.03-1.21), consistent with the hypothesis that endometrial cancer risk is driven by E2. From 28 candidate-causal SNPs, 12 co-located with three putative gene-regulatory elements and their risk alleles associated with higher CYP19A1 expression in bioinformatical analyses. For both phenotypes, the associations with rs727479 were stronger among women with a higher BMI (Pinteraction=0.034 and 0.066 respectively), suggesting a biologically plausible gene-environment interaction.
Resumo:
STUDY QUESTION: Do DNA variants in the growth regulation by estrogen in breast cancer 1 (GREB1) region regulate endometrial GREB1 expression and increase the risk of developing endometriosis in women? SUMMARY ANSWER: We identified new single nucleotide polymorphisms (SNPs) with strong association with endometriosis at the GREB1 locus although we did not detect altered GREB1 expression in endometriosis patients with defined genotypes. WHAT IS ALREADY KNOWN: Genome-wide association studies have identified the GREB1 region on chromosome 2p25.1 for increasing endometriosis risk. The differential expression of GREB1 has also been reported by others in association with endometriosis disease phenotype. STUDY DESIGN, SIZE, DURATION: Fine mapping studies comprehensively evaluated SNPs within the GREB1 region in a large-scale data set (>2500 cases and >4000 controls). Publicly available bioinformatics tools were employed to functionally annotate SNPs showing the strongest association signal with endometriosis risk. Endometrial GREB1 mRNA and protein expression was studied with respect to phases of the menstrual cycle (n = 2-45 per cycle stage) and expression quantitative trait loci (eQTL) analysis for significant SNPs were undertaken for GREB1 [mRNA (n = 94) and protein (n = 44) in endometrium]. PARTICIPANTS/MATERIALS, SETTING, METHODS: Participants in this study are females who provided blood and/or endometrial tissue samples in a hospital setting. The key SNPs were genotyped using Sequenom MassARRAY. The functional roles and regulatory annotations for identified SNPs are predicted by various publicly available bioinformatics tools. Endometrial GREB1 expression work employed qRT-PCR, western blotting and immunohistochemistry studies. MAIN RESULTS AND THE ROLE OF CHANCE: Fine mapping results identified a number of SNPs showing stronger association (0.004 < P < 0.032) with endometriosis risk than the original GWAS SNP (rs13394619) (P = 0.034). Some of these SNPs were predicted to have functional roles, for example, interaction with transcription factor motifs. The haplotype (a combination of alleles) formed by the risk alleles from two common SNPs showed significant association (P = 0.026) with endometriosis and epistasis analysis showed no evidence for interaction between the two SNPs, suggesting an additive effect of SNPs on endometriosis risk. In normal human endometrium, GREB1 protein expression was altered depending on the cycle stage (significantly different in late proliferative versus late secretory, P < 0.05) and cell type (glandular epithelium, not stromal cells). However, GREB1 expression in endometriosis cases versus controls and eQTL analyses did not reveal any significant changes. LIMITATIONS, REASONS FOR CAUTION: In silico prediction tools are generally based on cell lines different to our tissue and disease of interest. Functional annotations drawn from these analyses should be considered with this limitation in mind. We identified cell-specific and hormone-specific changes in GREB1 protein expression. The lack of a significant difference observed following our GREB1 expression studies may be the result of moderate power on mixed cell populations in the endometrial tissue samples. WIDER IMPLICATIONS OF THE FINDINGS: This study further implicates the GREB1 region on chromosome 2p25.1 and the GREB1 gene with involvement in endometriosis risk. More detailed functional studies are required to determine the role of the novel GREB1 transcripts in endometriosis pathophysiology. STUDY FUNDING/COMPETING INTERESTS: Funding for this work was provided by NHMRC Project Grants APP1012245, APP1026033, APP1049472 and APP1046880. There are no competing interests.
Resumo:
Genome-wide association studies show strong evidence of association with endometriosis for markers on chromosome 1p36 spanning the potential candidate genes WNT4, CDC42 and LINC00339. WNT4 is involved in development of the uterus, and the expression of CDC42 and LINC00339 are altered in women with endometriosis. We conducted fine mapping to examine the role of coding variants in WNT4 and CDC42 and determine the key SNPs with strongest evidence of association in this region. We identified rare coding variants in WNT4 and CDC42 present only in endometriosis cases. The frequencies were low and cannot account for the common signal associated with increased risk of endometriosis. Genotypes for five common SNPs in the region of chromosome 1p36 show stronger association signals when compared with rs7521902 reported in published genome scans. Of these, three SNPs rs12404660, rs3820282, and rs55938609 were located in DNA sequences with potential functional roles including overlap with transcription factor binding sites for FOXA1, FOXA2, ESR1, and ESR2. Functional studies will be required to identify the gene or genes implicated in endometriosis risk.
Resumo:
OBJECTIVE To refine a previously reported linkage peak for endometriosis on chromosome 10q26, and conduct follow-up analyses and a fine-mapping association study across the region to identify new candidate genes for endometriosis. DESIGN Case-control study. SETTING Academic research. PATIENT(S) Cases=3,223 women with surgically confirmed endometriosis; controls=1,190 women without endometriosis and 7,060 population samples. INTERVENTION(S) Analysis of 11,984 single nucleotide polymorphisms on chromosome 10. MAIN OUTCOME MEASURE(S) Allele frequency differences between cases and controls. RESULT(S) Linkage analyses on families grouped by endometriosis symptoms (primarily subfertility) provided increased evidence for linkage (logarithm of odds score=3.62) near a previously reported linkage peak. Three independent association signals were found at 96.59 Mb (rs11592737), 105.63 Mb (rs1253130), and 124.25 Mb (rs2250804). Analyses including only samples from linkage families supported the association at all three regions. However, only rs11592737 in the cytochrome P450 subfamily C (CYP2C19) gene was replicated in an independent sample of 2,079 cases and 7,060 population controls. CONCLUSION(S) The role of the CYP2C19 gene in conferring risk for endometriosis warrants further investigation.
Resumo:
Disease maps are effective tools for explaining and predicting patterns of disease outcomes across geographical space, identifying areas of potentially elevated risk, and formulating and validating aetiological hypotheses for a disease. Bayesian models have become a standard approach to disease mapping in recent decades. This article aims to provide a basic understanding of the key concepts involved in Bayesian disease mapping methods for areal data. It is anticipated that this will help in interpretation of published maps, and provide a useful starting point for anyone interested in running disease mapping methods for areal data. The article provides detailed motivation and descriptions on disease mapping methods by explaining the concepts, defining the technical terms, and illustrating the utility of disease mapping for epidemiological research by demonstrating various ways of visualising model outputs using a case study. The target audience includes spatial scientists in health and other fields, policy or decision makers, health geographers, spatial analysts, public health professionals, and epidemiologists.
Resumo:
The production of sustainable housing requires the cooperation of a variety of participants with different goals, needs, levels of commitment and cultures. To achieve mainstream net zero energy housing objectives, there is arguably a need for a non-linear network of collaboration between all the stakeholders. In order to create and improve such collaborative networks between stakeholders, we first need to map stakeholders’ relationships, processes, and practices. This paper discusses compares and contrasts maps of the sustainable housing production life-cycle in Australia, developed from different perspectives. The paper highlights the strengths and weaknesses of each visualization, clarifying where gaps in connectivity exist within existing industry networks. Understanding these gaps will help researchers and practitioners identify how to improve the collaboration between participants in the housing industry. This in turn may improve decision making across all stakeholder groups, leading to mainstream implementation of sustainability into the housing industry.
Resumo:
Background In order to increase the efficient allocation of soil-transmitted helminth (STH) disease control resources in the Philippines, we aimed to describe for the first time the spatial variation in the prevalence of A. lumbricoides, T. trichiura and hookworm across the country, quantify the association between the physical environment and spatial variation of STH infection and develop predictive risk maps for each infection. Methodology/Principal Findings Data on STH infection from 35,573 individuals across the country were geolocated at the barangay level and included in the analysis. The analysis was stratified geographically in two major regions: 1) Luzon and the Visayas and 2) Mindanao. Bayesian geostatistical models of STH prevalence were developed, including age and sex of individuals and environmental variables (rainfall, land surface temperature and distance to inland water bodies) as predictors, and diagnostic uncertainty was incorporated. The role of environmental variables was different between regions of the Philippines. This analysis revealed that while A. lumbricoides and T. trichiura infections were widespread and highly endemic, hookworm infections were more circumscribed to smaller foci in the Visayas and Mindanao. Conclusions/Significance This analysis revealed significant spatial variation in STH infection prevalence within provinces of the Philippines. This suggests that a spatially targeted approach to STH interventions, including mass drug administration, is warranted. When financially possible, additional STH surveys should be prioritized to high-risk areas identified by our study in Luzon.
Resumo:
Wildlife conservation involves an understanding of a specific animal, its environment and the interaction within a local ecosystem. Unmanned Aerial Vehicles (UAVs) present cost effective, non-intrusive solution for detecting animals over large areas and the use thermal imaging cameras offer the ability detect animals that would otherwise be concealed to visible light cameras. This report examines some of limitations on using SURF for the development of large maps using multiple stills images extracted from the thermal imaging video camera which contain wildlife (eg. Koala in them).
Resumo:
Flood extent mapping is a basic tool for flood damage assessment, which can be done by digital classification techniques using satellite imageries, including the data recorded by radar and optical sensors. However, converting the data into the information we need is not a straightforward task. One of the great challenges involved in the data interpretation is to separate the permanent water bodies and flooding regions, including both the fully inundated areas and the wet areas where trees and houses are partly covered with water. This paper adopts the decision fusion technique to combine the mapping results from radar data and the NDVI data derived from optical data. An improved capacity in terms of identifying the permanent or semi-permanent water bodies from flood inundated areas has been achieved. Computer software tools Multispec and Matlab were used.