399 resultados para error monitoring
Resumo:
Background/aims: Remote monitoring for heart failure has not only been evaluated in a large number of randomised controlled trials, but also in many systematic reviews and meta-analyses. The aim of this meta-review was to identify, appraise and synthesise existing systematic reviews that have evaluated the effects of remote monitoring in heart failure. Methods: Using a Cochrane methodology, we electronically searched all relevant online databases and search engines, performed a forward citation search as well as hand-searched bibliographies. Only fully published systematic reviews of invasive and/or non-invasive remote monitoring interventions were included. Two reviewers independently extracted data. Results: Sixty-five publications from 3333 citations were identified. Seventeen fulfilled the inclusion and exclusion criteria. Quality varied with A Measurement Tool to Assess Systematic Reviews (AMSTAR scores) ranging from 2 to 11 (mean 5.88). Seven reviews (41%) pooled results from individual studies for meta-analysis. Eight (47%) considered all non-invasive remote monitoring strategies. Four (24%) focused specifically on telemonitoring. Four (24%) included studies investigating both non-invasive and invasive technologies. Population characteristics of the included studies were not reported consistently. Mortality and hospitalisations were the most frequently reported outcomes 12 (70%). Only five reviews (29%) reported healthcare costs and compliance. A high degree of heterogeneity was reported in many of the meta-analyses. Conclusions: These results should be considered in context of two negative RCTs of remote monitoring for heart failure that have been published since the meta-analyses (TIM-HF and Tele-HF). However, high quality reviews demonstrated improved mortality, quality of life, reduction in hospitalisations and healthcare costs.
Resumo:
The invention relates to a method for monitoring user activity on a mobile device, comprising an input and an output unit, comprising the following steps preferably in the following order: detecting and / or logging user activity on said input unit, identifying a foreground running application, hashing of a user-interface-element management list of the foreground running application, and creating a screenshot comprising items displayed on said input unit. The invention also relates to a method for analyzing user activity at a server, comprising the following step: obtaining at least one of an information about detected and / or logged user activity, an information about a foreground running application, a hashed user-interface-element management list and a screenshot from a mobile device. Further, a computer program product is provided, comprising one or more computer readable media having computer executable instructions for performing the steps of at least one of the aforementioned methods.
Resumo:
Classifier selection is a problem encountered by multi-biometric systems that aim to improve performance through fusion of decisions. A particular decision fusion architecture that combines multiple instances (n classifiers) and multiple samples (m attempts at each classifier) has been proposed in previous work to achieve controlled trade-off between false alarms and false rejects. Although analysis on text-dependent speaker verification has demonstrated better performance for fusion of decisions with favourable dependence compared to statistically independent decisions, the performance is not always optimal. Given a pool of instances, best performance with this architecture is obtained for certain combination of instances. Heuristic rules and diversity measures have been commonly used for classifier selection but it is shown that optimal performance is achieved for the `best combination performance' rule. As the search complexity for this rule increases exponentially with the addition of classifiers, a measure - the sequential error ratio (SER) - is proposed in this work that is specifically adapted to the characteristics of sequential fusion architecture. The proposed measure can be used to select a classifier that is most likely to produce a correct decision at each stage. Error rates for fusion of text-dependent HMM based speaker models using SER are compared with other classifier selection methodologies. SER is shown to achieve near optimal performance for sequential fusion of multiple instances with or without the use of multiple samples. The methodology applies to multiple speech utterances for telephone or internet based access control and to other systems such as multiple finger print and multiple handwriting sample based identity verification systems.
Resumo:
After attending this presentation, attendees will gain awareness of: (1) the error and uncertainty associated with the application of the Suchey-Brooks (S-B) method of age estimation of the pubic symphysis to a contemporary Australian population; (2) the implications of sexual dimorphism and bilateral asymmetry of the pubic symphysis through preliminary geometric morphometric assessment; and (3) the value of three-dimensional (3D) autopsy data acquisition for creating forensic anthropological standards. This presentation will impact the forensic science community by demonstrating that, in the absence of demographically sound skeletal collections, post-mortem autopsy data provides an exciting platform for the construction of large contemporary ‘virtual osteological libraries’ for which forensic anthropological research can be conducted on Australian individuals. More specifically, this study assesses the applicability and accuracy of the S-B method to a contemporary adult population in Queensland, Australia, and using a geometric morphometric approach, provides an insight to the age-related degeneration of the pubic symphysis. Despite the prominent use of the Suchey-Brooks (1990) method of age estimation in forensic anthropological practice, it is subject to intrinsic limitations, with reports of differential inter-population error rates between geographical locations1-4. Australian forensic anthropology is constrained by a paucity of population specific standards due to a lack of repositories of documented skeletons. Consequently, in Australian casework proceedings, standards constructed from predominately American reference samples are applied to establish a biological profile. In the global era of terrorism and natural disasters, more specific population standards are required to improve the efficiency of medico-legal death investigation in Queensland. The sample comprises multi-slice computed tomography (MSCT) scans of the pubic symphysis (slice thickness: 0.5mm, overlap: 0.1mm) on 195 individuals of caucasian ethnicity aged 15-70 years. Volume rendering reconstruction of the symphyseal surface was conducted in Amira® (v.4.1) and quantitative analyses in Rapidform® XOS. The sample was divided into ten-year age sub-sets (eg. 15-24) with a final sub-set of 65-70 years. Error with respect to the method’s assigned means were analysed on the basis of bias (directionality of error), inaccuracy (magnitude of error) and percentage correct classification of left and right symphyseal surfaces. Morphometric variables including surface area, circumference, maximum height and width of the symphyseal surface and micro-architectural assessment of cortical and trabecular bone composition were quantified using novel automated engineering software capabilities. The results of this study demonstrated correct age classification utilizing the mean and standard deviations of each phase of the S-B method of 80.02% and 86.18% in Australian males and females, respectively. Application of the S-B method resulted in positive biases and mean inaccuracies of 7.24 (±6.56) years for individuals less than 55 years of age, compared to negative biases and mean inaccuracies of 5.89 (±3.90) years for individuals greater than 55 years of age. Statistically significant differences between chronological and S-B mean age were demonstrated in 83.33% and 50% of the six age subsets in males and females, respectively. Asymmetry of the pubic symphysis was a frequent phenomenon with 53.33% of the Queensland population exhibiting statistically significant (χ2 - p<0.01) differential phase classification of left and right surfaces of the same individual. Directionality was found in bilateral asymmetry, with the right symphyseal faces being slightly older on average and providing more accurate estimates using the S-B method5. Morphometric analysis verified these findings, with the left surface exhibiting significantly greater circumference and surface area than the right (p<0.05). Morphometric analysis demonstrated an increase in maximum height and width of the surface with age, with most significant changes (p<0.05) occurring between the 25-34 and 55-64 year age subsets. These differences may be attributed to hormonal components linked to menopause in females and a reduction in testosterone in males. Micro-architectural analysis demonstrated degradation of cortical composition with age, with differential bone resorption between the medial, ventral and dorsal surfaces of the pubic symphysis. This study recommends that the S-B method be applied with caution in medico-legal death investigations of unknown skeletal remains in Queensland. Age estimation will always be accompanied by error; therefore this study demonstrates the potential for quantitative morphometric modelling of age related changes of the pubic symphysis as a tool for methodological refinement, providing a rigor and robust assessment to remove the subjectivity associated with current pelvic aging methods.
Resumo:
Increases in functionality, power and intelligence of modern engineered systems led to complex systems with a large number of interconnected dynamic subsystems. In such machines, faults in one subsystem can cascade and affect the behavior of numerous other subsystems. This complicates the traditional fault monitoring procedures because of the need to train models of the faults that the monitoring system needs to detect and recognize. Unavoidable design defects, quality variations and different usage patterns make it infeasible to foresee all possible faults, resulting in limited diagnostic coverage that can only deal with previously anticipated and modeled failures. This leads to missed detections and costly blind swapping of acceptable components because of one’s inability to accurately isolate the source of previously unseen anomalies. To circumvent these difficulties, a new paradigm for diagnostic systems is proposed and discussed in this paper. Its feasibility is demonstrated through application examples in automotive engine diagnostics.
Resumo:
Operational modal analysis (OMA) is prevalent in modal identifi cation of civil structures. It asks for response measurements of the underlying structure under ambient loads. A valid OMA method requires the excitation be white noise in time and space. Although there are numerous applications of OMA in the literature, few have investigated the statistical distribution of a measurement and the infl uence of such randomness to modal identifi cation. This research has attempted modifi ed kurtosis to evaluate the statistical distribution of raw measurement data. In addition, a windowing strategy employing this index has been proposed to select quality datasets. In order to demonstrate how the data selection strategy works, the ambient vibration measurements of a laboratory bridge model and a real cable-stayed bridge have been respectively considered. The analysis incorporated with frequency domain decomposition (FDD) as the target OMA approach for modal identifi cation. The modal identifi cation results using the data segments with different randomness have been compared. The discrepancy in FDD spectra of the results indicates that, in order to fulfi l the assumption of an OMA method, special care shall be taken in processing a long vibration measurement data. The proposed data selection strategy is easy-to-apply and verifi ed effective in modal analysis.
Resumo:
This thesis explored the development of statistical methods to support the monitoring and improvement in quality of treatment delivered to patients undergoing coronary angioplasty procedures. To achieve this goal, a suite of outcome measures was identified to characterise performance of the service, statistical tools were developed to monitor the various indicators and measures to strengthen governance processes were implemented and validated. Although this work focused on pursuit of these aims in the context of a an angioplasty service located at a single clinical site, development of the tools and techniques was undertaken mindful of the potential application to other clinical specialties and a wider, potentially national, scope.
Resumo:
This thesis represents a major step forward in understanding the link between the development of combustion related faults in diesel engines and the generation of acoustic emissions. The findings presented throughout the thesis provide a foundation so that future diesel engine monitoring systems are able to more effectively detect and monitor developing faults. In undertaking this research knowledge concerning engine function and relevant failure mechanisms was combined with different modelling methods to generate a framework that was used to effectively identify fault related activity within acoustic emissions recorded from different engines.
Resumo:
BACKGROUND: We aimed to determine the prevalence and associations of refractive error on Norfolk Island. DESIGN: Population-based study on Norfolk Island, South Pacific. PARTICIPANTS: All permanent residents on Norfolk Island aged ≥ 15 years were invited to participate. METHODS: Patients underwent non-cycloplegic autorefraction, slit-lamp biomicroscope examination and biometry assessment. Only phakic eyes were analysed. MAIN OUTCOME MEASURES: Prevalence and multivariate associations of refractive error and myopia. RESULTS: There were 677 people (645 right phakic eyes, 648 left phakic eyes) aged ≥ 15 years were included in this study. Mean age of participants was 51.1 (standard deviation 15.7; range 15-81). Three hundred and seventy-six people (55.5%) were female. Adjusted to the 2006 Norfolk Island population, prevalence estimates of refractive error were as follows: myopia (mean spherical equivalent ≥ -1.0 D) 10.1%, hypermetropia (mean spherical equivalent ≥ 1.0 D) 36.6%, and astigmatism 17.7%. Significant independent predictors of myopia in the multivariate model were lower age (P < 0.001), longer axial length (P < 0.001), shallower anterior chamber depth (P = 0.031) and increased corneal curvature (P < 0.001). Significant independent predictors of refractive error were increasing age (P < 0.001), male gender (P = 0.009), Pitcairn ancestry (P = 0.041), cataract (P < 0.001), longer axial length (P < 0.001) and decreased corneal curvature (P < 0.001). CONCLUSIONS: The prevalence of myopia on Norfolk Island is lower than on mainland Australia, and the Norfolk Island population demonstrates ethnic differences in the prevalence estimates. Given the significant associations between refractive error and several ocular biometry characteristics, Norfolk Island may be a useful population in which to find the genetic basis of refractive error.
Resumo:
Airborne particles have been shown to be associated with a wide range of adverse health effects, which has led to a recent increase in medical research to gain better insight into their health effects. However, accurate evaluation of the exposure-dose-response relationship is highly dependent on the ability to track actual exposure levels of people to airborne particles. This is quite a complex task, particularly in relation to submicrometer and ultrafine particles, which can vary quite significantly in terms of particle surface area and number concentrations. Therefore, suitable monitors that can be worn for measuring personal exposure to these particles are needed. This paper presents an evaluation of the metrological performance of six diffusion charger sensors, NanoTracer (Philips Aerasense) monitors, when measuring particle number and surface area concentrations, as well as particle number distribution mean when compared to reference instruments. Tests in the laboratory (by generating monodisperse and polydisperse aerosols) and in the field (using natural ambient particles) were designed to evaluate the response of these devices under both steady-state and dynamics conditions. Results showed that the NanoTracers performed well when measuring steady state aerosols, however they strongly underestimated actual concentrations during dynamic response testing. The field experiments also showed that, when the majority of the particles were smaller than 20 nm, which occurs during particle formation events in the atmosphere, the NanoTracer underestimated number concentration quite significantly. Even though the NanoTracer can be used for personal monitoring of exposure to ultrafine particles, it also has limitations which need to be considered in order to provide meaningful results.
Resumo:
Robotic systems are increasingly being utilised as fundamental data-gathering tools by scientists, allowing new perspectives and a greater understanding of the planet and its environmental processes. Today's robots are already exploring our deep oceans, tracking harmful algal blooms and pollution spread, monitoring climate variables, and even studying remote volcanoes. This article collates and discusses the significant advancements and applications of marine, terrestrial, and airborne robotic systems developed for environmental monitoring during the last two decades. Emerging research trends for achieving large-scale environmental monitoring are also reviewed, including cooperative robotic teams, robot and wireless sensor network (WSN) interaction, adaptive sampling and model-aided path planning. These trends offer efficient and precise measurement of environmental processes at unprecedented scales that will push the frontiers of robotic and natural sciences.
Resumo:
Most studies examining the temperature–mortality association in a city used temperatures from one site or the average from a network of sites. This may cause measurement error as temperature varies across a city due to effects such as urban heat islands. We examined whether spatiotemporal models using spatially resolved temperatures produced different associations between temperature and mortality compared with time series models that used non-spatial temperatures. We obtained daily mortality data in 163 areas across Brisbane city, Australia from 2000 to 2004. We used ordinary kriging to interpolate spatial temperature variation across the city based on 19 monitoring sites. We used a spatiotemporal model to examine the impact of spatially resolved temperatures on mortality. Also, we used a time series model to examine non-spatial temperatures using a single site and the average temperature from three sites. We used squared Pearson scaled residuals to compare model fit. We found that kriged temperatures were consistent with observed temperatures. Spatiotemporal models using kriged temperature data yielded slightly better model fit than time series models using a single site or the average of three sites' data. Despite this better fit, spatiotemporal and time series models produced similar associations between temperature and mortality. In conclusion, time series models using non-spatial temperatures were equally good at estimating the city-wide association between temperature and mortality as spatiotemporal models.
Resumo:
PURPOSE Current research on errors in health care focuses almost exclusively on system and clinician error. It tends to exclude how patients may create errors that influence their health. We aimed to identify the types of errors that patients can contribute and help manage, especially in primary care. METHODS Eleven nominal group interviews of patients and primary health care professionals were held in Auckland, New Zealand, during late 2007. Group members reported and helped to classify types of potential error by patients. We synthesized the ideas that emerged from the nominal groups into a taxonomy of patient error. RESULTS Our taxonomy is a 3-level system encompassing 70 potential types of patient error. The first level classifies 8 categories of error into 2 main groups: action errors and mental errors. The action errors, which result in part or whole from patient behavior, are attendance errors, assertion errors, and adherence errors. The mental errors, which are errors in patient thought processes, comprise memory errors, mindfulness errors, misjudgments, and—more distally—knowledge deficits and attitudes not conducive to health. CONCLUSION The taxonomy is an early attempt to understand and recognize how patients may err and what clinicians should aim to influence so they can help patients act safely. This approach begins to balance perspectives on error but requires further research. There is a need to move beyond seeing patient, clinician, and system errors as separate categories of error. An important next step may be research that attempts to understand how patients, clinicians, and systems interact to cocreate and reduce errors.
Resumo:
The Lake Wivenhoe Integrated Wireless Sensor Network is conceptually similar to traditional SCADA monitoring and control approaches. However, it is applied in an open system using wireless devices to monitor processes that affect water quality at both a high spatial and temporal frequency. This monitoring assists scientists to better understand drivers of key processes that influence water quality and provide the operators with an early warning system if below standard water enters the reservoir. Both of these aspects improve the safety and efficient delivery of drinking water to the end users.
Resumo:
Voltammetric techniques have been introduced to monitor the formation of gold nanoparticles produced via the reaction of the amino acid glycyl-L-tyrosine with Au(III) (bromoaurate) in 0.05 M KOH conditions. The alkaline conditions facilitate amino acid binding to Au(III), inhibit the rate of reduction to Au(0), and provide an excellent supporting electrolyte for voltammetric studies. Data obtained revealed that a range of time-dependent gold solution species are involved in gold nanoparticle formation and that the order in which reagents are mixed is critical to the outcome. Concomitantly with voltammetric measurements, the properties of gold nanoparticles formed are probed by examination of electronic spectra in order to understand how the solution environment present during nanoparticle growth affects the final distribution of the nanoparticles. Images obtained by the ex situ transmission electron microscopy (TEM) technique enable the physical properties of the nanoparticles isolated in the solid state to be assessed. Use of this combination of in situ and ex situ techniques provides a versatile framework for elucidating the details of nanoparticle formation.