398 resultados para electricity applications
Electrochemical fabrication of metallic nanostructured electrodes for electroanalytical applications
Resumo:
The use of electrodeposited metal-based nanostructures for electroanalytical applications has recently received widespread attention. There are several approaches to creating nanostructured materials through electrochemical routes that include facile electrodeposition at either untreated or modified electrodes, or through the use of physical or chemical templating methods. This allows the shape, size and composition of the nanomaterial to be readily tuned for the application of interest. The use of such materials is particularly suited to electroanalytical applications. In this mini-review an overview of recently developed nanostructured materials developed through electrochemical routes is presented as well as their electroanalytical applications in areas of biological and environmental importance.
Resumo:
IEEE 802.11p is the new standard for Inter-Vehicular Communications (IVC) using the 5.9 GHz frequency band, as part of the DSRC framework; it will enable applications based on Cooperative Systems. Simulation is widely used to estimate or verify the potential benefits of such cooperative applications, notably in terms of safety for the drivers. We have developed a performance model for 802.11p that can be used by simulations of cooperative applications (e.g. collision avoidance) without requiring intricate models of the whole IVC stack. Instead, it provide a a straightforward yet realistic modelisation of IVC performance. Our model uses data from extensive field trials to infer the correlation between speed, distance and performance metrics such as maximum range, latency and frame loss. Then, we improve this model to limit the number of profiles that have to be generated when there are more than a few couples of emitter-receptor in a given location. Our model generates realistic performance for rural or suburban environments among small groups of IVC-equipped vehicles and road side units.
Resumo:
The occurrence of extreme movements in the spot price of electricity represents a significant source of risk to retailers. A range of approaches have been considered with respect to modelling electricity prices; these models, however, have relied on time-series approaches, which typically use restrictive decay schemes placing greater weight on more recent observations. This study develops an alternative, semi-parametric method for forecasting, which uses state-dependent weights derived from a kernel function. The forecasts that are obtained using this method are accurate and therefore potentially useful to electricity retailers in terms of risk management.
Resumo:
This paper presents a series of operating schedules for Battery Energy Storage Companies (BESC) to provide peak shaving and spinning reserve services in the electricity markets under increasing wind penetration. As individual market participants, BESC can bid in ancillary services markets in an Independent System Operator (ISO) and contribute towards frequency and voltage support in the grid. Recent development in batteries technologies and availability of the day-ahead spot market prices would make BESC economically feasible. Profit maximization of BESC is achieved by determining the optimum capacity of Energy Storage Systems (ESS) required for meeting spinning reserve requirements as well as peak shaving. Historic spot market prices and frequency deviations from Australia Energy Market Operator (AEMO) are used for numerical simulations and the economic benefits of BESC is considered reflecting various aspects in Australia’s National Electricity Markets (NEM).
Resumo:
Relevant Education Contexts, Examples of TCQSM Applicability to Undergraduate Disciplines, Why Teach with the TCQSM?, TCQS Teaching Tools, Theory Curriculum Example: Examination Question, Problem Based Learning Example: Senior Year Semester Team Project, Honors Dissertation Example Topics, Where to From Here?
Resumo:
This paper describes the theory and practice for a stable haptic teleoperation of a flying vehicle. It extends passivity-based control framework for haptic teleoperation of aerial vehicles in the longest intercontinental setting that presents great challenges. The practicality of the control architecture has been shown in maneuvering and obstacle-avoidance tasks over the internet with the presence of significant time-varying delays and packet losses. Experimental results are presented for teleoperation of a slave quadrotor in Australia from a master station in the Netherlands. The results show that the remote operator is able to safely maneuver the flying vehicle through a structure using haptic feedback of the state of the slave and the perceived obstacles.
Resumo:
Integration of small-scale electricity generators, known as Distributed Generation (DG), into the distribution networks has become increasingly popular at the present. This tendency together with the falling price of synchronous-type generator has potential to give the DG a better chance in participating in the voltage regulation process together with other devices already available in the system. The voltage control issue turns out to be a very challenging problem for the distribution engineers since existing control coordination schemes would need to be reconsidered to take into account the DG operation. In this paper, we propose a control coordination technique, which is able to utilize the ability of the DG as a voltage regulator, and at the same time minimizes interaction with other active devices, such as On-load Tap Changing Transformer (OLTC) and voltage regulator. The technique has been developed based on the concept of control zone, Line Drop Compensation (LDC), as well as the choice of controller's parameters. Simulations carried out on an Australian system show that the technique is suitable and flexible for any system with multiple regulating devices including DG.
Resumo:
The progress of technology has led to the increased adoption of energy monitors among household energy consumers. While the monitors available on the market deliver real-time energy usage feedback to the consumer, the form of this data is usually unengaging and mundane. Moreover, it fails to address consumers with different motivations and needs to save and compare energy. This master‟s thesis project presents a study that seeks to inform design guidelines for differently motivated energy consumers. The focus of the research is on comparative feedback supported by a community of energy consumers. In particular, the discussed comparative feedback types are explanatory comparison, temporal self-comparison, norm comparison, one-on-one comparison and ranking, whereby the last three support exploring the potential of socialising energy-related feedback in social networking sites, such as Facebook. These feedback types were integrated in EnergyWiz – a mobile application that enables users to compare with their past performance, neighbours, contacts from social networking sites and other EnergyWiz users. The application was developed through a theory-driven approach and evaluated in personal, semi-structured interviews which provided insights on how motivation-related comparative feedback should be designed. It was also employed in expert focus group discussions which resulted in defining opportunities and challenges before mobile, social energy monitors. The findings have unequivocally shown that users with different motivations to compare and to conserve energy have different preferences for comparative feedback types and design. It was established that one of the most influential factors determining design factors is the people users compare to. In addition, the research found that even simple communication strategies in Facebook, such as wall posts and groups can contribute to engagement with energy conservation practices. The concept of mobility of the application was evaluated as positive since it provides place and time-independent access to the energy consumption data.
Resumo:
Agent-based modelling (ABM), like other modelling techniques, is used to answer specific questions from real world systems that could otherwise be expensive or impractical. Its recent gain in popularity can be attributed to some degree to its capacity to use information at a fine level of detail of the system, both geographically and temporally, and generate information at a higher level, where emerging patterns can be observed. This technique is data-intensive, as explicit data at a fine level of detail is used and it is computer-intensive as many interactions between agents, which can learn and have a goal, are required. With the growing availability of data and the increase in computer power, these concerns are however fading. Nonetheless, being able to update or extend the model as more information becomes available can become problematic, because of the tight coupling of the agents and their dependence on the data, especially when modelling very large systems. One large system to which ABM is currently applied is the electricity distribution where thousands of agents representing the network and the consumers’ behaviours are interacting with one another. A framework that aims at answering a range of questions regarding the potential evolution of the grid has been developed and is presented here. It uses agent-based modelling to represent the engineering infrastructure of the distribution network and has been built with flexibility and extensibility in mind. What distinguishes the method presented here from the usual ABMs is that this ABM has been developed in a compositional manner. This encompasses not only the software tool, which core is named MODAM (MODular Agent-based Model) but the model itself. Using such approach enables the model to be extended as more information becomes available or modified as the electricity system evolves, leading to an adaptable model. Two well-known modularity principles in the software engineering domain are information hiding and separation of concerns. These principles were used to develop the agent-based model on top of OSGi and Eclipse plugins which have good support for modularity. Information regarding the model entities was separated into a) assets which describe the entities’ physical characteristics, and b) agents which describe their behaviour according to their goal and previous learning experiences. This approach diverges from the traditional approach where both aspects are often conflated. It has many advantages in terms of reusability of one or the other aspect for different purposes as well as composability when building simulations. For example, the way an asset is used on a network can greatly vary while its physical characteristics are the same – this is the case for two identical battery systems which usage will vary depending on the purpose of their installation. While any battery can be described by its physical properties (e.g. capacity, lifetime, and depth of discharge), its behaviour will vary depending on who is using it and what their aim is. The model is populated using data describing both aspects (physical characteristics and behaviour) and can be updated as required depending on what simulation is to be run. For example, data can be used to describe the environment to which the agents respond to – e.g. weather for solar panels, or to describe the assets and their relation to one another – e.g. the network assets. Finally, when running a simulation, MODAM calls on its module manager that coordinates the different plugins, automates the creation of the assets and agents using factories, and schedules their execution which can be done sequentially or in parallel for faster execution. Building agent-based models in this way has proven fast when adding new complex behaviours, as well as new types of assets. Simulations have been run to understand the potential impact of changes on the network in terms of assets (e.g. installation of decentralised generators) or behaviours (e.g. response to different management aims). While this platform has been developed within the context of a project focussing on the electricity domain, the core of the software, MODAM, can be extended to other domains such as transport which is part of future work with the addition of electric vehicles.
Resumo:
Global awareness for cleaner and renewable energy is transforming the electricity sector at many levels. New technologies are being increasingly integrated into the electricity grid at high, medium and low voltage levels, new taxes on carbon emissions are being introduced and individuals can now produce electricity, mainly through rooftop photovoltaic (PV) systems. While leading to improvements, these changes also introduce challenges, and a question that often rises is ‘how can we manage this constantly evolving grid?’ The Queensland Government and Ergon Energy, one of the two Queensland distribution companies, have partnered with some Australian and German universities on a project to answer this question in a holistic manner. The project investigates the impact the integration of renewables and other new technologies has on the physical structure of the grid, and how this evolving system can be managed in a sustainable and economical manner. To aid understanding of what the future might bring, a software platform has been developed that integrates two modelling techniques: agent-based modelling (ABM) to capture the characteristics of the different system units accurately and dynamically, and particle swarm optimization (PSO) to find the most economical mix of network extension and integration of distributed generation over long periods of time. Using data from Ergon Energy, two types of networks (3 phase, and Single Wired Earth Return or SWER) have been modelled; three-phase networks are usually used in dense networks such as urban areas, while SWER networks are widely used in rural Queensland. Simulations can be performed on these networks to identify the required upgrades, following a three-step process: a) what is already in place and how it performs under current and future loads, b) what can be done to manage it and plan the future grid and c) how these upgrades/new installations will perform over time. The number of small-scale distributed generators, e.g. PV and battery, is now sufficient (and expected to increase) to impact the operation of the grid, which in turn needs to be considered by the distribution network manager when planning for upgrades and/or installations to stay within regulatory limits. Different scenarios can be simulated, with different levels of distributed generation, in-place as well as expected, so that a large number of options can be assessed (Step a). Once the location, sizing and timing of assets upgrade and/or installation are found using optimisation techniques (Step b), it is possible to assess the adequacy of their daily performance using agent-based modelling (Step c). One distinguishing feature of this software is that it is possible to analyse a whole area at once, while still having a tailored solution for each of the sub-areas. To illustrate this, using the impact of battery and PV can have on the two types of networks mentioned above, three design conditions can be identified (amongst others): · Urban conditions o Feeders that have a low take-up of solar generators, may benefit from adding solar panels o Feeders that need voltage support at specific times, may be assisted by installing batteries · Rural conditions - SWER network o Feeders that need voltage support as well as peak lopping may benefit from both battery and solar panel installations. This small example demonstrates that no single solution can be applied across all three areas, and there is a need to be selective in which one is applied to each branch of the network. This is currently the function of the engineer who can define various scenarios against a configuration, test them and iterate towards an appropriate solution. Future work will focus on increasing the level of automation in identifying areas where particular solutions are applicable.
Resumo:
Reliable robotic perception and planning are critical to performing autonomous actions in uncertain, unstructured environments. In field robotic systems, automation is achieved by interpreting exteroceptive sensor information to infer something about the world. This is then mapped to provide a consistent spatial context, so that actions can be planned around the predicted future interaction of the robot and the world. The whole system is as reliable as the weakest link in this chain. In this paper, the term mapping is used broadly to describe the transformation of range-based exteroceptive sensor data (such as LIDAR or stereo vision) to a fixed navigation frame, so that it can be used to form an internal representation of the environment. The coordinate transformation from the sensor frame to the navigation frame is analyzed to produce a spatial error model that captures the dominant geometric and temporal sources of mapping error. This allows the mapping accuracy to be calculated at run time. A generic extrinsic calibration method for exteroceptive range-based sensors is then presented to determine the sensor location and orientation. This allows systematic errors in individual sensors to be minimized, and when multiple sensors are used, it minimizes the systematic contradiction between them to enable reliable multisensor data fusion. The mathematical derivations at the core of this model are not particularly novel or complicated, but the rigorous analysis and application to field robotics seems to be largely absent from the literature to date. The techniques in this paper are simple to implement, and they offer a significant improvement to the accuracy, precision, and integrity of mapped information. Consequently, they should be employed whenever maps are formed from range-based exteroceptive sensor data. © 2009 Wiley Periodicals, Inc.
Resumo:
For a decade, embedded driving assistance systems were mainly dedicated to the management of short time events (lane departure, collision avoidance, collision mitigation). Recently a great number of projects have been focused on cooperative embedded devices in order to extend environment perception. Handling an extended perception range is important in order to provide enough information for both path planning and co-pilot algorithms which need to anticipate events. To carry out such applications, simulation has been widely used. Simulation is efficient to estimate the benefits of Cooperative Systems (CS) based on Inter-Vehicular Communications (IVC). This paper presents a new and modular architecture built with the SiVIC simulator and the RTMaps™ multi-sensors prototyping platform. A set of improvements, implemented in SiVIC, are introduced in order to take into account IVC modelling and vehicles’ control. These 2 aspects have been tuned with on-road measurements to improve the realism of the scenarios. The results obtained from a freeway emergency braking scenario are discussed.
Resumo:
Electricity network investment and asset management require accurate estimation of future demand in energy consumption within specified service areas. For this purpose, simple models are typically developed to predict future trends in electricity consumption using various methods and assumptions. This paper presents a statistical model to predict electricity consumption in the residential sector at the Census Collection District (CCD) level over the state of New South Wales, Australia, based on spatial building and household characteristics. Residential household demographic and building data from the Australian Bureau of Statistics (ABS) and actual electricity consumption data from electricity companies are merged for 74 % of the 12,000 CCDs in the state. Eighty percent of the merged dataset is randomly set aside to establish the model using regression analysis, and the remaining 20 % is used to independently test the accuracy of model prediction against actual consumption. In 90 % of the cases, the predicted consumption is shown to be within 5 kWh per dwelling per day from actual values, with an overall state accuracy of -1.15 %. Given a future scenario with a shift in climate zone and a growth in population, the model is used to identify the geographical or service areas that are most likely to have increased electricity consumption. Such geographical representation can be of great benefit when assessing alternatives to the centralised generation of energy; having such a model gives a quantifiable method to selecting the 'most' appropriate system when a review or upgrade of the network infrastructure is required.
Resumo:
The aim of this work is to develop a demand-side-response model, which assists electricity consumers exposed to the market price to independently and proactively manage air-conditioning peak electricity demand. The main contribution of this research is to show how consumers can optimize the energy cost caused by the air conditioning load considering to several cases e.g. normal price, spike price, and the probability of a price spike case. This model also investigated how air-conditioning applies a pre-cooling method when there is a substantial risk of a price spike. The results indicate the potential of the scheme to achieve financial benefits for consumers and target the best economic performance for electrical generation distribution and transmission. The model was tested with Queensland electricity market data from the Australian Energy Market Operator and Brisbane temperature data from the Bureau of Statistics regarding hot days from 2011 to 2012.
Resumo:
This work presents a demand side response model (DSR) which assists small electricity consumers, through an aggregator, exposed to the market price to proactively mitigate price and peak impact on the electrical system. The proposed model allows consumers to manage air-conditioning when as a function of possible price spikes. The main contribution of this research is to demonstrate how consumers can minimise the total expected cost by optimising air-conditioning to account for occurrences of a price spike in the electricity market. This model investigates how pre-cooling method can be used to minimise energy costs when there is a substantial risk of an electricity price spike. The model was tested with Queensland electricity market data from the Australian Energy Market Operator and Brisbane temperature data from the Bureau of Statistics during hot days on weekdays in the period 2011 to 2012.