317 resultados para charged particle dynamics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research examines the entrepreneurship phenomenon, and the question: Why are some venture attempts more successful than others? This question is not a new one. Prior research has answered this by describing those that engage in nascent entrepreneurship. Yet, this approach yielded little consensus and offers little comfort for those newly considering venture creation (Gartner, 1988). Rather, this research considers the process of venture creation, by focusing on the actions of nascent entrepreneurs. However, the venture creation process is complex (Liao, Welsch, & Tan, 2005), and multi-dimensional (Davidsson, 2004). The process can vary in the amount of action engaged by the entrepreneur; the temporal dynamics of how action is enacted (Lichtenstein, Carter, Dooley, and Gartner 2007); or the sequence in which actions are undertaken. And little is known about whether any, or all three, of these dimensions matter. Further, there exists scant general knowledge about how the venture creation process influences venture creation outcomes (Gartner & Shaver, 2011). Therefore, this research conducts a systematic study of what entrepreneurs do as they create a new venture. The primary goal is to develop general principles so that advice may be offered on how to ‘proceed’, rather than how to ‘be’. Three integrated empirical studies were conducted that separately focus on each of the interrelated dimensions. The basis for this was a randomly sampled, longitudinal panel, of nascent ventures. Upon recruitment these ventures were in the process of being created, but yet to be established as new businesses. The ventures were tracked one year latter to follow up on outcomes. Accordingly, this research makes the following original contributions to knowledge. First, the findings suggest that all three of the dimensions play an important role: action, dynamics, and sequence. This implies that future research should take a multi-dimensional view of the venture creation process. Failing to do so can only result in a limited understanding of a complex phenomenon. Second, action is the fundamental means through which venture creation is achieved. Simply put, more active venture creation efforts are more likely more successful. Further, action is the medium which allows resource endowments their effect upon venture outcomes. Third, the dynamics of how venture creation plays out over time is also influential. Here, a process with a high rate of action which increases in intensity will more likely achieve positive outcomes. Forth, sequence analysis, suggests that the order in which actions are taken will also drive outcomes. Although venture creation generally flows in sequence from discovery toward exploitation (Shane & Venkataraman, 2000; Eckhardt & Shane, 2003; Shane, 2003), processes that actually proceed in this way are less likely to be realized. Instead, processes which specifically intertwine discovery and exploitation action together in symbiosis more likely achieve better outcomes (Sarasvathy, 2001; Baker, Miner, & Eesley, 2003). Further, an optimal venture creation order exists somewhere between these sequential and symbiotic process archetypes. A process which starts out as symbiotic discovery and exploitation, but switches to focus exclusively on exploitation later on is most likely to achieve venture creation. These sequence findings are unique, and suggest future integration between opposing theories for order in venture creation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internet services are important part of daily activities for most of us. These services come with sophisticated authentication requirements which may not be handled by average Internet users. The management of secure passwords for example creates an extra overhead which is often neglected due to usability reasons. Furthermore, password-based approaches are applicable only for initial logins and do not protect against unlocked workstation attacks. In this paper, we provide a non-intrusive identity verification scheme based on behavior biometrics where keystroke dynamics based-on free-text is used continuously for verifying the identity of a user in real-time. We improved existing keystroke dynamics based verification schemes in four aspects. First, we improve the scalability where we use a constant number of users instead of whole user space to verify the identity of target user. Second, we provide an adaptive user model which enables our solution to take the change of user behavior into consideration in verification decision. Next, we identify a new distance measure which enables us to verify identity of a user with shorter text. Fourth, we decrease the number of false results. Our solution is evaluated on a data set which we have collected from users while they were interacting with their mail-boxes during their daily activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Photoreceptor interactions reduce the temporal bandwidth of the visual system under mesopic illumination. The dynamics of these interactions are not clear. This study investigated cone-cone and rod-cone interactions when the rod (R) and three cone (L, M, S) photoreceptor classes contribute to vision via shared post-receptoral pathways. Methods: A four-primary photostimulator independently controlled photoreceptor activity in human observers. To determine the temporal dynamics of receptoral (L, S, R) and post-receptoral (LMS, LMSR, +L-M) pathways (5 Td, 7° eccentricity) in Experiment 1, ON-pathway sensitivity was assayed with an incremental probe (25ms) presented relative to onset of an incremental sawtooth conditioning pulse (1000ms). To define the post-receptoral pathways mediating the rod stimulus, Experiment 2 matched the color appearance of increased rod activation (30% contrast, 25-1000ms; constant cone excitation) with cone stimuli (variable L+M, L/L+M, S/L+M; constant rod excitation). Results: Cone-cone interactions with luminance stimuli (LMS, LMSR, L-cone) reduced Weber contrast sensitivity by 13% and the time course of adaptation was 23.7±1ms (μ±SE). With chromatic stimuli (+L-M, S), cone pathway sensitivity was also reduced and recovery was slower (+L-M 8%, 2.9±0.1ms; S 38%, 1.5±0.3ms). Threshold patterns at ON-conditioning pulse onset were monophasic for luminance and biphasic for chromatic stimuli. Rod-rod interactions increased sensitivity(19%) with a recovery time of 0.7±0.2ms. Compared to cone-cone interactions, rod-cone interactions with luminance stimuli reduced sensitivity to a lesser degree (5%) with faster recovery (42.9±0.7ms). Rod-cone interactions were absent with chromatic stimuli. Experiment 2 showed that rod activation generated luminance (L+M) signals at all durations, and chromatic signals (L/L+M, S/L+M) for durations >75ms. Conclusions: Temporal dynamics of cone-cone interactions are consistent with contrast sensitivity loss in the MC pathway for luminance stimuli and chromatically opponent responses in the PC and KC pathway with chromatic stimuli. Rod-cone interactions limit contrast sensitivity loss during dynamic illumination changes and increase the speed of mesopic light adaptation. The change in relative weighting of the temporal rod signal within the major post-receptoral pathways modifies the sensitivity and dynamics of photoreceptor interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene nanoribbon (GNR) with free edges demonstrates unique pre-existing edge energy and edge stress, leading to non-flat morphologies. Using molecular dynamics (MD) methods, we evaluated edge energies as well as edge stresses for four different edge types, including regular edges (armchair and zigzag), armchair edge terminated with hydrogen and reconstructed armchair. The results showed that compressive stress exists in the regular and hydrogen-terminated edges along the edge direction. In contrast, the reconstructed armchair edge is generally subject to tension. Furthermore, we also investigated shape transition between flat and rippled configurations of GNRs with different free edges. It was found that the pre-existing stress at free edges can greatly influence the initial energy state and the shape transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This contribution describes two mass movement deposits (total volume ~0.5 km3) identified in seven marine cores located 8 to 15 km offshore southern Montserrat, West Indies. The deposits were emplaced in the last 35 ka and have not previously been recognised in either the subaerial or distal submarine records. Age constraints, provided by radiocarbon dating, show that an explosive volcanic eruption occurred at ca 8–12 ka, emplacing a primary eruption-related deposit that overlies a large (~0.3 km3) reworked bioclastic and volcaniclastic flow deposit, formed from a shelf collapse between 8 and 35 ka. The origin of these deposits has been deduced through the correlation of marine sediment cores, component analysis and geochemical analysis. The 8–12 ka primary volcanic deposit was likely derived from a highly-erosive pyroclastic flow from the Soufrière Hills volcano that entered the ocean and mixed with the water column forming a water-supported density current. Previous investigations of the eruption record suggested that there was a hiatus in activity at the Soufrière Hills volcano between 16 and 6 ka. The ca 8–12 ka eruptive episode identified here shows that this hiatus was shorter than previously hypothesised, and thus highlights the importance of obtaining an accurate and completemarine record of events offshore from volcanic islands and incorporating such data into eruption history reconstructions. Comparisons with the submarine deposit characteristics of the 2003 dome collapse also suggests that the ~8–12 ka eruptive episode was more explosive than eruptions from the current eruptive episode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a commentary on the contribution by Dr Chow who questioned whether the functions of learning are general across all categories of tasks or whether there are some task-particular aspects to the functions of learning in relation to task type. Specifically, they queried whether principles and practice for the acquisition of sport skills are different than what they are for musical, industrial, military and human factors skills. In this commentary we argue that ecological dynamics contains general principles of motor learning that can be instantiated in specific performance contexts to underpin learning design. In this proposal, we highlight the importance of conducting skill acquisition research in sport, rather than relying on empirical outcomes of research from a variety of different performance contexts. Here we discuss how task constraints of different performance contexts (sport, industry, military, music) provide different specific information sources that individuals use to couple their actions when performing and acquiring skills. We conclude by suggesting that his relationship between performance task constraints and learning processes might help explain the traditional emphasis on performance curves and performance outcomes to infer motor learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This experimental study examines the effect on performance and emission outputs of a compression ignition engine operating on biodiesels of varying carbon chain length and the degree of unsaturation. A well-instrumented, heavy-duty, multi-cylinder, common-rail, turbo-charged diesel engine was used to ensure that the results contribute in a realistic way to the ongoing debate about the impact of biofuels. Comparative measurements are reported for engine performance as well as the emissions of NOx, particle number and size distribution, and the concentration of the reactive oxygen species (which provide a measure of the toxicity of emitted particles). It is shown that the biodiesels used in this study produce lower mean effective pressure, somewhat proportionally with their lower calorific values; however, the molecular structure has been shown to have little impact on the performance of the engine. The peak in-cylinder pressure is lower for the biodiesels that produce a smaller number of emitted particles, compared to fossil diesel, but the concentration of the reactive oxygen species is significantly higher because of oxygen in the fuels. The differences in the physicochemical properties amongst the biofuels and the fossil diesel significantly affect the engine combustion and emission characteristics. Saturated short chain length fatty acid methyl esters are found to enhance combustion efficiency, reduce NOx and particle number concentration, but results in high levels of fuel consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wide variety of experiments that involve the physics of small particles (μm to cm in size) of planetary significance can be conducted on the Space Station. Processes of interest include nucleation and condensation of particles from a gas, aggregation of small particles into larger ones, and low velocity collisions of particles. Only experiments relevant to planetary processes will be discussed in detail here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different types of defects can be introduced into graphene during material synthesis, and significantly influence the properties of graphene. In this work, we investigated the effects of structural defects, edge functionalisation and reconstruction on the fracture strength and morphology of graphene by molecular dynamics simulations. The minimum energy path analysis was conducted to investigate the formation of Stone-Wales defects. We also employed out-of-plane perturbation and energy minimization principle to study the possi-ble morphology of graphene nanoribbons with edge-termination. Our numerical results show that the fracture strength of graphene is dependent on defects and environmental temperature. However, pre-existing defects may be healed, resulting in strength recovery. Edge functionalization can induce compressive stress and ripples in the edge areas of gra-phene nanoribbons. On the other hand, edge reconstruction contributed to the tensile stress and curved shape in the graphene nanoribbons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to provide realistic data for air pollution inventories and source apportionment at airports, the morphology and composition of ultrafine particles (UFP) in aircraft engine exhaust were measured and characterized. For this purpose, two independent measurement techniques were employed to collect emissions during normal takeoff and landing operations at Brisbane Airport, Australia. PM1 emissions in the airfield were collected on filters and analyzed using the particle-induced X-ray emission (PIXE) technique. Morphological and compositional analyses of individual ultrafine particles in aircraft plumes were performed on silicon nitride membrane grids using transmission electron microscopy (TEM) combined with energy-dispersive X-ray microanalysis (EDX). TEM results showed that the deposited particles were in the range of 5 to 100 nm in diameter, had semisolid spherical shapes and were dominant in the nucleation mode (18 – 20 nm). The EDX analysis showed the main elements in the nucleation particles were C, O, S and Cl. The PIXE analysis of the airfield samples was generally in agreement with the EDX in detecting S, Cl, K, Fe and Si in the particles. The results of this study provide important scientific information on the toxicity of aircraft exhaust and their impact on local air quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has not yet been established whether the spatial variation of particle number concentration (PNC) within a microscale environment can have an effect on exposure estimation results. In general, the degree of spatial variation within microscale environments remains unclear, since previous studies have only focused on spatial variation within macroscale environments. The aims of this study were to determine the spatial variation of PNC within microscale school environments, in order to assess the importance of the number of monitoring sites on exposure estimation. Furthermore, this paper aims to identify which parameters have the largest influence on spatial variation, as well as the relationship between those parameters and spatial variation. Air quality measurements were conducted for two consecutive weeks at each of the 25 schools across Brisbane, Australia. PNC was measured at three sites within the grounds of each school, along with the measurement of meteorological and several other air quality parameters. Traffic density was recorded for the busiest road adjacent to the school. Spatial variation at each school was quantified using coefficient of variation (CV). The portion of CV associated with instrument uncertainty was found to be 0.3 and therefore, CV was corrected so that only non-instrument uncertainty was analysed in the data. The median corrected CV (CVc) ranged from 0 to 0.35 across the schools, with 12 schools found to exhibit spatial variation. The study determined the number of required monitoring sites at schools with spatial variability and tested the deviation in exposure estimation arising from using only a single site. Nine schools required two measurement sites and three schools required three sites. Overall, the deviation in exposure estimation from using only one monitoring site was as much as one order of magnitude. The study also tested the association of spatial variation with wind speed/direction and traffic density, using partial correlation coefficients to identify sources of variation and non-parametric function estimation to quantify the level of variability. Traffic density and road to school wind direction were found to have a positive effect on CVc, and therefore, also on spatial variation. Wind speed was found to have a decreasing effect on spatial variation when it exceeded a threshold of 1.5 (m/s), while it had no effect below this threshold. Traffic density had a positive effect on spatial variation and its effect increased until it reached a density of 70 vehicles per five minutes, at which point its effect plateaued and did not increase further as a result of increasing traffic density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Flightless Cormorant Phalacrocorax harrisi is restricted to c. 400 km of the western coastline of the Galápagos archipelago coinciding with the local occurrence of seasonal upwelling of oceanic currents. Individuals frequently make more than one breeding attempt per year, usually change mates, and when juveniles are raised, females desert them to the further care of their mates who complete the rearing alone. Here we report data from a ten-year historical study of a colony stretching c.2 km along the coast-line and representing c. 12% of the total population of the species. The number of clutches laid and juveniles fledged were linked to the occurrence of cold water in off-shore foraging grounds. Most Flightless Cormorants have attachments to local stretches of coastline several hundred metres long. However, a few birds travelled many kilometres, including between colonies, sometimes over open sea. We show that males invest more in nest-building and feeding of the offspring than their mates, and we relate this to the (presumed) in-bred nature of the colony and to male and female reproductive strategies. Our data validate a published demographic model of the species (Valle 1995).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric ultrafine particles play an important role in affecting human health, altering climate and degrading visibility. Numerous studies have been conducted to better understand the formation process of these particles, including field measurements, laboratory chamber studies and mathematical modeling approaches. Field studies on new particle formation found that formation processes were significantly affected by atmospheric conditions, such as the availability of particle precursors and meteorological conditions. However, those studies were mainly carried out in rural areas of the northern hemisphere and information on new particle formation in urban areas, especially those in subtropical regions, is limited. In general, subtropical regions display a higher level of solar radiation, along with stronger photochemical reactivity, than those regions investigated in previous studies. However, based on the results of these studies, the mechanisms involved in the new particle formation process remain unclear, particularly in the Southern Hemisphere. Therefore, in order to fill this gap in knowledge, a new particle formation study was conducted in a subtropical urban area in the Southern Hemisphere during 2009, which measured particle size distribution in different locations in Brisbane, Australia. Characterisation of nucleation events was conducted at the campus building of the Queensland University of Technology (QUT), located in an urban area of Brisbane. Overall, the annual average number concentrations of ultrafine, Aitken and nucleation mode particles were found to be 9.3 x 103, 3.7 x 103 and 5.6 x 103 cm-3, respectively. This was comparable to levels measured in urban areas of northern Europe, but lower than those from polluted urban areas such as the Yangtze River Delta, China and Huelva and Santa Cruz de Tenerife, Spain. Average particle number concentration (PNC) in the Brisbane region did not show significant seasonal variation, however a relatively large variation was observed during the warmer season. Diurnal variation of Aitken and nucleation mode particles displayed different patterns, which suggested that direct vehicle exhaust emissions were a major contributor of Aitken mode particles, while nucleation mode particles originated from vehicle exhaust emissions in the morning and photochemical production at around noon. A total of 65 nucleation events were observed during 2009, in which 40 events were classified as nucleation growth events and the remainder were nucleation burst events. An interesting observation in this study was that all nucleation growth events were associated with vehicle exhaust emission plumes, while the nucleation burst events were associated with industrial emission plumes from an industrial area. The average particle growth rate for nucleation events was found to be 4.6 nm hr-1 (ranging from 1.79-7.78 nm hr-1), which is comparable to other urban studies conducted in the United States, while monthly particle growth rates were found to be positively related to monthly solar radiation (r = 0.76, p <0.05). The particle growth rate values reported in this work are the first of their kind to be reported for the subtropical urban area of Australia. Furthermore, the influence of nucleation events on PNC within the urban airshed was also investigated. PNC was simultaneously measured at urban (QUT), roadside (Woolloongabba) and semi-urban (Rocklea) sites in Brisbane during 2009. Total PNC at these sites was found to be significantly affected by regional nucleation events. The relative fractions of PNC to total daily PNC observed at QUT, Woolloongabba and Rocklea were found to be 12%, 9% and 14%, respectively, during regional nucleation events. These values were higher than those observed as a result of vehicle exhaust emissions during weekday mornings, which ranged from 5.1-5.5% at QUT and Woolloongabba. In addition, PNC in the semi-urban area of Rocklea increased by a factor of 15.4 when it was upwind from urban pollution sources under the influence of nucleation burst events. Finally, we investigated the influence of sulfuric acid on new particle formation in the study region. A H2SO4 proxy was calculated by using [SO2], solar radiation and particle condensation sink data to represent the new particle production strength for the urban, roadside and semi-urban areas of Brisbane during the period June-July of 2009. The temporal variations of the H2SO4 proxies and the nucleation mode particle concentration were found to be in phase during nucleation events in the urban and roadside areas. In contrast, the peak of proxy concentration occurred 1-2 hr prior to the observed peak in nucleation mode particle concentration at the downwind semi-urban area of Brisbane. A moderate to strong linear relationship was found between the proxy and the freshly formed particles, with r2 values of 0.26-0.77 during the nucleation events. In addition, the log[H2SO4 proxy] required to produce new particles was found to be ~1.0 ppb Wm-2 s and below 0.5 ppb Wm-2 s for the urban and semi-urban areas, respectively. The particle growth rates were similar during nucleation events at the three study locations, with an average value of 2.7 ± 0.5 nm hr-1. This result suggested that a similar nucleation mechanism dominated in the study region, which was strongly related to sulphuric acid concentration, however the relationship between the proxy and PNC was poor in the semi-urban area of Rocklea. This can be explained by the fact that the nucleation process was initiated upwind of the site and the resultant particles were transported via the wind to Rocklea. This explanation is also supported by the higher geometric mean diameter value observed for particles during the nucleation event and the time lag relationship between the H2SO4 proxy and PNC observed at Rocklea. In summary, particle size distribution was continuously measured in a subtropical urban area of southern hemisphere during 2009, the findings from which formed the first particle size distribution dataset in the study region. The characteristics of nucleation events in the Brisbane region were quantified and the properties of the nucleation growth and burst events are discussed in detail using a case studies approach. To further investigate the influence of nucleation events on PNC in the study region, PNC was simultaneously measured at three locations to examine the spatial variation of PNC during the regional nucleation events. In addition, the impact of upwind urban pollution on the downwind semi-urban area was quantified during these nucleation events. Sulphuric acid was found to be an important factor influencing new particle formation in the urban and roadside areas of the study region, however, a direct relationship with nucleation events at the semi-urban site was not observed. This study provided an overview of new particle formation in the Brisbane region, and its influence on PNC in the surrounding area. The findings of this work are the first of their kind for an urban area in the southern hemisphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the nature of the coupling interactions between copper and uracil as well as its several derivatives has been systematically investigated employing the atoms in molecules (AIM) theory and energy decomposition analyses. The whole interaction process has been investigated through the analyses of the radial distribution functions of the Cu⋯X (X = S and O) contact on the basis of the ab initio molecular dynamics. No direct relationship between the adsorption strengths and inhibition efficiencies of the inhibitors has been observed. Additionally, the possibility of the methyl-substituted dithiouracil species to act as copper corrosion inhibitors has been tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LiFePO4 is a commercially available battery material with good theoretical discharge capacity, excellent cycle life and increased safety compared with competing Li-ion chemistries. It has been the focus of considerable experimental and theoretical scrutiny in the past decade, resulting in LiFePO4 cathodes that perform well at high discharge rates. This scrutiny has raised several questions about the behaviour of LiFePO4 material during charge and discharge. In contrast to many other battery chemistries that intercalate homogeneously, LiFePO4 can phase-separate into highly and lowly lithiated phases, with intercalation proceeding by advancing an interface between these two phases. The main objective of this thesis is to construct mathematical models of LiFePO4 cathodes that can be validated against experimental discharge curves. This is in an attempt to understand some of the multi-scale dynamics of LiFePO4 cathodes that can be difficult to determine experimentally. The first section of this thesis constructs a three-scale mathematical model of LiFePO4 cathodes that uses a simple Stefan problem (which has been used previously in the literature) to describe the assumed phase-change. LiFePO4 crystals have been observed agglomerating in cathodes to form a porous collection of crystals and this morphology motivates the use of three size-scales in the model. The multi-scale model developed validates well against experimental data and this validated model is then used to examine the role of manufacturing parameters (including the agglomerate radius) on battery performance. The remainder of the thesis is concerned with investigating phase-field models as a replacement for the aforementioned Stefan problem. Phase-field models have recently been used in LiFePO4 and are a far more accurate representation of experimentally observed crystal-scale behaviour. They are based around the Cahn-Hilliard-reaction (CHR) IBVP, a fourth-order PDE with electrochemical (flux) boundary conditions that is very stiff and possesses multiple time and space scales. Numerical solutions to the CHR IBVP can be difficult to compute and hence a least-squares based Finite Volume Method (FVM) is developed for discretising both the full CHR IBVP and the more traditional Cahn-Hilliard IBVP. Phase-field models are subject to two main physicality constraints and the numerical scheme presented performs well under these constraints. This least-squares based FVM is then used to simulate the discharge of individual crystals of LiFePO4 in two dimensions. This discharge is subject to isotropic Li+ diffusion, based on experimental evidence that suggests the normally orthotropic transport of Li+ in LiFePO4 may become more isotropic in the presence of lattice defects. Numerical investigation shows that two-dimensional Li+ transport results in crystals that phase-separate, even at very high discharge rates. This is very different from results shown in the literature, where phase-separation in LiFePO4 crystals is suppressed during discharge with orthotropic Li+ transport. Finally, the three-scale cathodic model used at the beginning of the thesis is modified to simulate modern, high-rate LiFePO4 cathodes. High-rate cathodes typically do not contain (large) agglomerates and therefore a two-scale model is developed. The Stefan problem used previously is also replaced with the phase-field models examined in earlier chapters. The results from this model are then compared with experimental data and fit poorly, though a significant parameter regime could not be investigated numerically. Many-particle effects however, are evident in the simulated discharges, which match the conclusions of recent literature. These effects result in crystals that are subject to local currents very different from the discharge rate applied to the cathode, which impacts the phase-separating behaviour of the crystals and raises questions about the validity of using cathodic-scale experimental measurements in order to determine crystal-scale behaviour.