398 resultados para Walker
Resumo:
Parallel interleaved converters are finding more applications everyday, for example they are frequently used for VRMs on PC main boards mainly to obtain better transient response. Parallel interleaved converters can have their inductances uncoupled, directly coupled or inversely coupled, all of which have different applications with associated advantages and disadvantages. Coupled systems offer more control over converter features, such as ripple currents, inductance volume and transient response. To be able to gain an intuitive understanding of which type of parallel interleaved converter, what amount of coupling, what number of levels and how much inductance should be used for different applications a simple equivalent model is needed. As all phases of an interleaved converter are supposed to be identical, the equivalent model is nothing more than a separate inductance which is common to all phases. Without utilising this simplification the design of a coupled system is quite daunting. Being able to design a coupled system involves solving and understanding the RMS currents of the input, individual phase (or cell) and output. A procedure using this equivalent model and a small amount of modulo arithmetic is detailed.
Resumo:
This paper presents two efficiency models for the regenerative dynamometer to be built at the University of Queensland. The models incorporate an accurate accounting of the losses associated with the regenerative dynamometer and the battery modelling technique used. In addition to the models the cycle and instantaneous efficiencies were defined for a regenerative system that requires a desired torque output. The simulation of the models allowed the instantaneous and cycle efficiencies to be examined. The results show the intended dynamometer machine has significant efficiency draw backs but incorporating field winding control, the efficiency can be improved.
Resumo:
This paper presents a design technique of a fully regenerative dynamic dynamometer. It incorporates an energy storage system to absorb the energy variation due to dynamometer transients. This allows the minimum power electronics requirement at the grid to supply the losses. The simulation results of the full system over a driving cycle show the amount of energy required to complete a driving cycle, therefore the size of the energy storage system can be determined.
Resumo:
Many grid connected PV installations consist of a single series string of PV modules and a single DC-AC inverter. This efficiency of this topology can be enhanced with additional low power, low cost per panel converter modules. Most current flows directly in the series string which ensures high efficiency. However parallel Cúk or buck-boost DC-DC converters connected across each adjacent pair of modules now support any desired current difference between series connected PV modules. Each converter “shuffles” the desired difference in PV module currents between two modules and so on up the string. Spice simulations show that even with poor efficiency, these modules can make a significant improvement to the overall power which can be recovered from partially shaded PV strings.
Resumo:
This paper presents a new simplified parametric analysis technique for the design of fuel cell and hybrid-electric vehicles. The technique utilizes a comprehensive set of ∼30 parameters to fully characterize the vehicle platform, powertrain components, vehicle performance requirements and driving conditions. It is best applied to the sizing of powertrain components and prediction of energy consumption in a vehicle. This new parametric technique makes a good complement to existing vehicle simulation software packages and therefore represents a potentially valuable tool for the hybrid vehicle designer.
Resumo:
Interleaved switching and coupled inductors are proven methods for reducing DC-DC converter output ripple. This paper furthers discussions of these techniques to arrangements of many buck converters connected in parallel. The different possible arrangements of the DC-DC converters are discussed and criteria for fair comparisons between them are chosen. The effects of interleaved switching on ripple values are presented and subsequent effects of coupling the inductors is then investigated. A generalised solution for current ripple in n coupled inductor converters is presented. Simulations are used to verify the solution and characterise the converter and output ripple for all configurations.
Resumo:
An ironless motor for use as direct wheel drive is presented. The motor is intended for use in a lightweight (600kg), low drag, series hybrid commuter vehicle under development at The University of Queensland. The vehicle will utilise these ironless motors in each of its rear wheels, with each motor producing a peak torque output of 500Nm and a maximum rotational speed of 1500rpm. The axial flux motor consists of twin Ironless litz wire stators with a central magnetic ring and simplified Halbach magnet arrays on either side. A small amount of iron is used to support the outer Halbach arrays and to improve the peak magnetic flux density. Ducted air cooling is used to remove heat from the motor and will allow for a continuous torque rating of 250Nm. Ironless machines have previously been shown to be effective in high speed, high frequency applications (+1000Hz). They are generally regarded as non-optimal for low speed applications as iron cores allow for better magnet utilisation and do not significantly increase the weight of a machine. However, ironless machines can also be seen to be effective in applications where the average torque requirement is much lower than the peak torque requirement such as in some vehicle drive applications. The low spinning losses in ironless machines are shown to result in very high energy throughput efficiency in a wide range of vehicle driving cycles.
Resumo:
The measurement of losses in high efficiency / high power converters is difficult. Measuring the losses directly from the difference between the input and output power results in large errors. Calorimetric methods are usually used to bypass this issue but introduce different problems, such as, long measurement times, limited power loss measurement range and/or large set up cost. In this paper the total losses of a converter are measured directly and switching losses are exacted. The measurements can be taken with only three multimeters and a current probe and a standard bench power supply. After acquiring two or three power loss versus output current sweeps, a series of curve fitting processes are applied and the switching losses extracted.
Resumo:
Investigates the braking performance requirements of the UltraCommuter, a lightweight series hybrid electric vehicle currently under development at the University of Queensland. With a predicted vehicle mass of 600 kg and two in-wheel motors each capable of 500 Nm of peak torque, decelerations up to 0.46 g are theoretically possible using purely regenerative braking. With 99% of braking demands less than 0.35 g, essentially all braking can be regenerative. The wheel motors have sufficient peak torque capability to lock the rear wheels in combination with front axle braking, eliminating the need for friction braking at the rear. Emergency braking levels approaching 1 g are achieved by supplementation with front disk brakes. This paper presents equations describing the peak front and rear axle braking forces which occur under straight line braking, including gradients. Conventionally, to guarantee stability, mechanical front/rear proportioning of braking effort ensures that the front axle locks first. In this application, all braking is initially regenerative at the rear, and an adaptive ''by-wire'' proportioning system presented ensures this stability requirement is still satisfied. Front wheel drive and all wheel drive systems are also discussed. Finally, peak and continuous performance measures, not commonly provided for friction brakes, are derived for the UltraCommuter's motor capability and range of operation.
Resumo:
New residential scale photovoltaic (PV) arrays are commonly connected to the grid by a single DC-AC inverter connected to a series string of PV modules, or many small DC-AC inverters which connect one or two modules directly to the AC grid. This paper shows that a "converter-per-module" approach offers many advantages including individual module maximum power point tracking, which gives great flexibility in module layout, replacement, and insensitivity to shading; better protection of PV sources, and redundancy in the case of source or converter failure; easier and safer installation and maintenance; and better data gathering. Simple nonisolated per-module DC-DC converters can be series connected to create a high voltage string connected to a simplified DC-AC inverter. These advantages are available without the cost or efficiency penalties of individual DC-AC grid connected inverters. Buck, boost, buck-boost and Cuk converters are possible cascadable converters. The boost converter is best if a significant step up is required, such as with a short string of 12 PV modules. A string of buck converters requires many more modules, but can always deliver any combination of module power. The buck converter is the most efficient topology for a given cost. While flexible in voltage ranges, buck-boost and Cuk converters are always at an efficiency or alternatively cost disadvantage
Resumo:
The University of Queensland UltraCommuter project is the demonstration of an ultra-light weight, low drag, energy efficient and low polluting, electric commuter vehicle equipped with a 2.5m2 on-board solar array. A key goal of the project is to make the vehicle predominantly self-sufficient from solar power for normal driving purposes , so that it does not require charging or refuelling from off-board sources. This paper examines the technical feasibility of the solar-powered commuter vehicle concept, as it applies the UltraCommuter project. A parametric description of a solar-powered commuter vehicle is presented. Real solar insolation data is then used to predict the solar driving range for the UltraCommuter and this is compared to typical urban usage patterns for commuter vehicles in Queensland. A comparative analysis of annual greenhouse gas emissions from the vehicle is also presented. The results show that the UltraCommuter’s on-board solar array can provide substantial supplementation of the energy required for normal driving, powering 90% of annual travel needs for an average QLD passenger vehicle. The vehicle also has excellent potential to reduce annual greenhouse gas emissions from the private transport sector, achieving a 98% reduction in CO2 emissions when compared to the average QLD passenger vehicle. Lastly, the vehicle battery pack provides for tolerance to consecutive days of poor weather without resorting to grid charging, giving uninterrupted functionality to the user. These results hold great promise for the technical feasibility of the solar-powered commuter vehicle concept.
Resumo:
The pulse power characteristics of ultracapacitors appear well suited to electric vehicle applications, where they may supply the peak power more efficiently than the battery, and can prevent excessive over sizing of the battery pack due to peak power demands. Operation of ultracapacitors in battery electric vehicles is examined for possible improvements in system efficiency, vehicle driving range, battery pack lifetime, and potential reductions in system lifecycle cost. The lifecycle operation of these ultracapacitors is simulated using custom-built, dynamic simulation code constructed in Matlab. Despite apparent gains in system efficiency and driving range, the results strongly suggest that the inclusion of ultracapacitors in the electric vehicle does not make sense from a lifecycle cost perspective. Furthermore, a comparison with results from earlier work shows that this outcome is highly dependant upon the efficiency and cost of the battery under consideration. However, it is likely that the lifecycle cost benefits of ultracapacitors in these electric vehicles would be, at most, marginal and do not justify the additional capital costs and system complexity that would be incurred in the vehicle
Resumo:
This paper considers the design of a radial flux permanent magnet iron less core brushless DC motor for use in an electric wheel drive with an integrated epicyclic gear reduction. The motor has been designed for a continuous output torque of 30 Nm and peak rating of 60 Nm with a maximum operating speed of 7000 RPM. In the design of brushless DC motors with a toothed iron stator the peak air-gap magnetic flux density is typically chosen to be close to that of the remanence value of the magnets used. This paper demonstrates that for an ironless motor the optimal peak air-gap flux density is closer to the maximum energy product of the magnets used. The use of a radial flux topology allows for high frequency operation and can be shown to give high specific power output while maintaining a relatively low magnet mass. Two-dimensional finite element analysis is used to predict the air-gap flux density. The motor design is based around commonly available NdFeB bar magnet size
Resumo:
In 1999, power electronics laboratory practicals were isolated two-hour sessions with only nominal assessment. Students were unmotivated, and didn’t prepare for or subsequently review these sessions. The pracs were rushed, and students’ actions task oriented. Learning was shallow at best. In 2000, the practical component was changed to two projects, each spanning four weeks. The projects were larger, linked, real world problems, tackled by groups of three students. Assessment was via individual workbooks kept during the project, a group demonstration of the working project by all members, and a subsequent written report. These projects were highly successful in motivating the students, and achieved the transfer of the theory presented in lectures into personal practical understanding of that material. These outcomes were judged by observations of the class, project and exam marks, and responses to a questionnaire given at the conclusion of the semester.
Resumo:
An accurate PV module electrical model is presented based on the Shockley diode equation. The simple model has a photo-current current source, a single diode junction and a series resistance, and includes temperature dependences. The method of parameter extraction and model evaluation in Matlab is demonstrated for a typical 60W solar panel. This model is used to investigate the variation of maximum power point with temperature and isolation levels. A comparison of buck versus boost maximum power point tracker (MPPT) topologies is made, and compared with a direct connection to a constant voltage (battery) load. The boost converter is shown to have a slight advantage over the buck, since it can always track the maximum power point.