294 resultados para Velocity Map Imaging
Resumo:
Progression of spinal deformity in children was studied with Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) to identify how gravity affects the deformity and to determine the full three-dimensional character of the deformity. The CT study showed that gravity is significant in deformity progression in some patients which has implications for clinical patient management. The world first MRI study showed that the standard clinical measure used to define the extent of the deformity is inadequate and further use of three-dimensional MRI should be considered by spinal surgeons.
Resumo:
Background There has been growing interest in mixed species plantation systems because of their potential to provide a range of socio-economic and bio-physical benefits which can be matched to the diverse needs of smallholders and communities. Potential benefits include the production of a range of forest products for home and commercial use; improved soil fertility especially when nitrogen fixing species are included; improved survival rates and greater productivity of species; a reduction in the amount of damage from pests or disease; and improved biodiversity and wildlife habitats. Despite these documented services and growing interest in mixed species plantation systems, the actual planting areas in the tropics are low, and monocultures are still preferred for industrial plantings and many reforestation programs because of perceived higher economic returns and readily available information about the species and their silviculture. In contrast, there are few guidelines for the design and management of mixed-species systems, including the social and ecological factors of successful mixed species plantings. Methods This protocol explains the methodology used to investigate the following question: What is the available evidence for the relative performance of different designs of mixed-species plantings for smallholder and community forestry in the tropics? This study will systematically search, identify and describe studies related to mixed species plantings across tropical and temperate zones to identify the social and ecological factors that affect polyculture systems. The objectives of this study are first to identify the evidence of biophysical or socio-economic factors that have been considered when designing mixed species systems for community and smallholder forestry in the tropics; and second, to identify gaps in research of mixed species plantations. Results of the study will help create guidelines that can assist practitioners, scientists and farmers to better design mixed species plantation systems for smallholders in the tropics.
Resumo:
Because brain structure and function are affected in neurological and psychiatric disorders, it is important to disentangle the sources of variation in these phenotypes. Over the past 15 years, twin studies have found evidence for both genetic and environmental influences on neuroimaging phenotypes, but considerable variation across studies makes it difficult to draw clear conclusions about the relative magnitude of these influences. Here we performed the first meta-analysis of structural MRI data from 48 studies on >1,250 twin pairs, and diffusion tensor imaging data from 10 studies on 444 twin pairs. The proportion of total variance accounted for by genes (A), shared environment (C), and unshared environment (E), was calculated by averaging A, C, and E estimates across studies from independent twin cohorts and weighting by sample size. The results indicated that additive genetic estimates were significantly different from zero for all metaanalyzed phenotypes, with the exception of fractional anisotropy (FA) of the callosal splenium, and cortical thickness (CT) of the uncus, left parahippocampal gyrus, and insula. For many phenotypes there was also a significant influence of C. We now have good estimates of heritability for many regional and lobar CT measures, in addition to the global volumes. Confidence intervals are wide and number of individuals small for many of the other phenotypes. In conclusion, while our meta-analysis shows that imaging measures are strongly influenced by genes, and that novel phenotypes such as CT measures, FA measures, and brain activation measures look especially promising, replication across independent samples and demographic groups is necessary.
Resumo:
There is a strong genetic risk for late-onset Alzheimer's disease (AD), but so far few gene variants have been identified that reliably contribute to that risk. A newly confirmed genetic risk allele C of the clusterin (CLU) gene variant rs11136000 is carried by ~88% of Caucasians. The C allele confers a 1.16 greater odds of developing late-onset AD than the T allele. AD patients have reductions in regional white matter integrity. We evaluated whether the CLU risk variant was similarly associated with lower white matter integrity in healthy young humans. Evidence of early brain differences would offer a target for intervention decades before symptom onset. We scanned 398 healthy young adults (mean age, 23.6 ± 2.2 years) with diffusion tensor imaging, a variation of magnetic resonance imaging sensitive to white matter integrity in the living brain. We assessed genetic associations using mixed-model regression at each point in the brain to map the profile of these associations with white matter integrity. Each C allele copy of the CLUvariant was associated with lower fractional anisotropy-a widely accepted measure of white matter integrity-in multiple brain regions, including several known to degenerate in AD. These regions included the splenium of the corpus callosum, the fornix, cingulum, and superior and inferior longitudinal fasciculi in both brain hemispheres. Young healthy carriers of the CLU gene risk variant showed a distinct profile of lower white matter integrity that may increase vulnerability to developing AD later in life.
Resumo:
We extended genetic linkage analysis - an analysis widely used in quantitative genetics - to 3D images to analyze single gene effects on brain fiber architecture. We collected 4 Tesla diffusion tensor images (DTI) and genotype data from 258 healthy adult twins and their non-twin siblings. After high-dimensional fluid registration, at each voxel we estimated the genetic linkage between the single nucleotide polymorphism (SNP), Val66Met (dbSNP number rs6265), of the BDNF gene (brain-derived neurotrophic factor) with fractional anisotropy (FA) derived from each subject's DTI scan, by fitting structural equation models (SEM) from quantitative genetics. We also examined how image filtering affects the effect sizes for genetic linkage by examining how the overall significance of voxelwise effects varied with respect to full width at half maximum (FWHM) of the Gaussian smoothing applied to the FA images. Raw FA maps with no smoothing yielded the greatest sensitivity to detect gene effects, when corrected for multiple comparisons using the false discovery rate (FDR) procedure. The BDNF polymorphism significantly contributed to the variation in FA in the posterior cingulate gyrus, where it accounted for around 90-95% of the total variance in FA. Our study generated the first maps to visualize the effect of the BDNF gene on brain fiber integrity, suggesting that common genetic variants may strongly determine white matter integrity.
Resumo:
Despite substantial progress in measuring the 3D profile of anatomical variations in the human brain, their genetic and environmental causes remain enigmatic. We developed an automated system to identify and map genetic and environmental effects on brain structure in large brain MRI databases . We applied our multi-template segmentation approach ("Multi-Atlas Fluid Image Alignment") to fluidly propagate hand-labeled parameterized surface meshes into 116 scans of twins (60 identical, 56 fraternal), labeling the lateral ventricles. Mesh surfaces were averaged within subjects to minimize segmentation error. We fitted quantitative genetic models at each of 30,000 surface points to measure the proportion of shape variance attributable to (1) genetic differences among subjects, (2) environmental influences unique to each individual, and (3) shared environmental effects. Surface-based statistical maps revealed 3D heritability patterns, and their significance, with and without adjustments for global brain scale. These maps visualized detailed profiles of environmental versus genetic influences on the brain, extending genetic models to spatially detailed, automatically computed, 3D maps.
Resumo:
Semantic priming occurs when a subject is faster in recognising a target word when it is preceded by a related word compared to an unrelated word. The effect is attributed to automatic or controlled processing mechanisms elicited by short or long interstimulus intervals (ISIs) between primes and targets. We employed event-related functional magnetic resonance imaging (fMRI) to investigate blood oxygen level dependent (BOLD) responses associated with automatic semantic priming using an experimental design identical to that used in standard behavioural priming tasks. Prime-target semantic strength was manipulated by using lexical ambiguity primes (e.g., bank) and target words related to dominant or subordinate meaning of the ambiguity. Subjects made speeded lexical decisions (word/nonword) on dominant related, subordinate related, and unrelated word pairs presented randomly with a short ISI. The major finding was a pattern of reduced activity in middle temporal and inferior prefrontal regions for dominant versus unrelated and subordinate versus unrelated comparisons, respectively. These findings are consistent with both a dual process model of semantic priming and recent repetition priming data that suggest that reductions in BOLD responses represent neural priming associated with automatic semantic activation and implicate the left middle temporal cortex and inferior prefrontal cortex in more automatic aspects of semantic processing.
Resumo:
Diffusion imaging can map anatomical connectivity in the living brain, offering new insights into fundamental questions such as how the left and right brain hemispheres differ. Anatomical brain asymmetries are related to speech and language abilities, but less is known about left/right hemisphere differences in brain wiring. To assess this, we scanned 457 young adults (age 23.4±2.0 SD years) and 112 adolescents (age 12-16) with 4-Tesla 105-gradient high-angular resolution diffusion imaging. We extracted fiber tracts throughout the brain with a Hough transform method. A 70×70 connectivity matrix was created, for each subject, based on the proportion of fibers intersecting 70 cortical regions. We identified significant differences in the proportions of fibers intersecting left and right hemisphere cortical regions. The degree of asymmetry in the connectivity matrices varied with age, as did the asymmetry in network topology measures such as the small-world effect.
Resumo:
Cerebral responses to alternating periods of a control task and a selective letter generation paradigm were investigated with functional Magnetic Resonance Imaging (fMRI). Subjects selectively generated letters from four designated sets of six letters from the English language alphabet, with the instruction that they were not to produce letters in alphabetical order either forward or backward, repeat or alternate letters. Performance during this condition was compared with that of a control condition in which subjects recited the same letters in alphabetical order. Analyses revealed significant and extensive foci of activation in a number of cerebral regions including mid-dorsolateral frontal cortex, inferior frontal gyrus, precuneus, supramarginal gyrus, and cerebellum during the selective letter generation condition. These findings are discussed with respect to recent positron emission tomography (PET) and fMRI studies of verbal working memory and encoding/retrieval in episodic memory.
Resumo:
Understanding how the brain matures in healthy individuals is critical for evaluating deviations from normal development in psychiatric and neurodevelopmental disorders. The brain's anatomical networks are profoundly re-modeled between childhood and adulthood, and diffusion tractography offers unprecedented power to reconstruct these networks and neural pathways in vivo. Here we tracked changes in structural connectivity and network efficiency in 439 right-handed individuals aged 12 to 30 (211 female/126 male adults, mean age=23.6, SD=2.19; 31 female/24 male 12 year olds, mean age=12.3, SD=0.18; and 25 female/22 male 16 year olds, mean age=16.2, SD=0.37). All participants were scanned with high angular resolution diffusion imaging (HARDI) at 4 T. After we performed whole brain tractography, 70 cortical gyral-based regions of interest were extracted from each participant's co-registered anatomical scans. The proportion of fiber connections between all pairs of cortical regions, or nodes, was found to create symmetric fiber density matrices, reflecting the structural brain network. From those 70 × 70 matrices we computed graph theory metrics characterizing structural connectivity. Several key global and nodal metrics changed across development, showing increased network integration, with some connections pruned and others strengthened. The increases and decreases in fiber density, however, were not distributed proportionally across the brain. The frontal cortex had a disproportionate number of decreases in fiber density while the temporal cortex had a disproportionate number of increases in fiber density. This large-scale analysis of the developing structural connectome offers a foundation to develop statistical criteria for aberrant brain connectivity as the human brain matures.
Resumo:
The insula, hidden deep within the Sylvian fissures, has proven difficult to study from a connectivity perspective. Most of our current information on the anatomical connectivity of the insula comes from studies of nonhuman primates and post mortem human dissections. To date, only two neuroimaging studies have successfully examined the connectivity of the insula. Here we examine how the connectivity of the insula develops between ages 12 and 30, in 307 young adolescent and adult subjects scanned with 4-Tesla high angular resolution diffusion imaging (HARDI). The density of fiber connections between the insula and the frontal and parietal cortex decreased with age, but the connection density between the insula and the temporal cortex generally increased with age. This trajectory is in line with well-known patterns of cortical development in these regions. In addition, males and females showed different developmental trajectories for the connection between the left insula and the left precentral gyrus. The insula plays many different roles, some of them affected in neuropsychiatric disorders; this information on the insula's connectivity may help efforts to elucidate mechanisms of brain disorders in which it is implicated.
Resumo:
Modern non-invasive brain imaging technologies, such as diffusion weighted magnetic resonance imaging (DWI), enable the mapping of neural fiber tracts in the white matter, providing a basis to reconstruct a detailed map of brain structural connectivity networks. Brain connectivity networks differ from random networks in their topology, which can be measured using small worldness, modularity, and high-degree nodes (hubs). Still, little is known about how individual differences in structural brain network properties relate to age, sex, or genetic differences. Recently, some groups have reported brain network biomarkers that enable differentiation among individuals, pairs of individuals, and groups of individuals. In addition to studying new topological features, here we provide a unifying general method to investigate topological brain networks and connectivity differences between individuals, pairs of individuals, and groups of individuals at several levels of the data hierarchy, while appropriately controlling false discovery rate (FDR) errors. We apply our new method to a large dataset of high quality brain connectivity networks obtained from High Angular Resolution Diffusion Imaging (HARDI) tractography in 303 young adult twins, siblings, and unrelated people. Our proposed approach can accurately classify brain connectivity networks based on sex (93% accuracy) and kinship (88.5% accuracy). We find statistically significant differences associated with sex and kinship both in the brain connectivity networks and in derived topological metrics, such as the clustering coefficient and the communicability matrix.
Resumo:
Cortical connectivity is associated with cognitive and behavioral traits that are thought to vary between sexes. Using high-angular resolution diffusion imaging at 4 Tesla, we scanned 234 young adult twins and siblings (mean age: 23.4 2.0 SD years) with 94 diffusion-encoding directions. We applied a novel Hough transform method to extract fiber tracts throughout the entire brain, based on fields of constant solid angle orientation distribution functions (ODFs). Cortical surfaces were generated from each subject's 3D T1-weighted structural MRI scan, and tracts were aligned to the anatomy. Network analysis revealed the proportions of fibers interconnecting 5 key subregions of the frontal cortex, including connections between hemispheres. We found significant sex differences (147 women/87 men) in the proportions of fibers connecting contralateral superior frontal cortices. Interhemispheric connectivity was greater in women, in line with long-standing theories of hemispheric specialization. These findings may be relevant for ongoing studies of the human connectome.
Resumo:
Meta-analyses estimate a statistical effect size for a test or an analysis by combining results from multiple studies without necessarily having access to each individual study's raw data. Multi-site meta-analysis is crucial for imaging genetics, as single sites rarely have a sample size large enough to pick up effects of single genetic variants associated with brain measures. However, if raw data can be shared, combining data in a "mega-analysis" is thought to improve power and precision in estimating global effects. As part of an ENIGMA-DTI investigation, we use fractional anisotropy (FA) maps from 5 studies (total N=2, 203 subjects, aged 9-85) to estimate heritability. We combine the studies through meta-and mega-analyses as well as a mixture of the two - combining some cohorts with mega-analysis and meta-analyzing the results with those of the remaining sites. A combination of mega-and meta-approaches may boost power compared to meta-analysis alone.