244 resultados para Search Engine
Resumo:
Particle swarm optimization (PSO), a new population based algorithm, has recently been used on multi-robot systems. Although this algorithm is applied to solve many optimization problems as well as multi-robot systems, it has some drawbacks when it is applied on multi-robot search systems to find a target in a search space containing big static obstacles. One of these defects is premature convergence. This means that one of the properties of basic PSO is that when particles are spread in a search space, as time increases they tend to converge in a small area. This shortcoming is also evident on a multi-robot search system, particularly when there are big static obstacles in the search space that prevent the robots from finding the target easily; therefore, as time increases, based on this property they converge to a small area that may not contain the target and become entrapped in that area.Another shortcoming is that basic PSO cannot guarantee the global convergence of the algorithm. In other words, initially particles explore different areas, but in some cases they are not good at exploiting promising areas, which will increase the search time.This study proposes a method based on the particle swarm optimization (PSO) technique on a multi-robot system to find a target in a search space containing big static obstacles. This method is not only able to overcome the premature convergence problem but also establishes an efficient balance between exploration and exploitation and guarantees global convergence, reducing the search time by combining with a local search method, such as A-star.To validate the effectiveness and usefulness of algorithms,a simulation environment has been developed for conducting simulation-based experiments in different scenarios and for reporting experimental results. These experimental results have demonstrated that the proposed method is able to overcome the premature convergence problem and guarantee global convergence.
Resumo:
The SNP-SNP interactome has rarely been explored in the context of neuroimaging genetics mainly due to the complexity of conducting approximately 10(11) pairwise statistical tests. However, recent advances in machine learning, specifically the iterative sure independence screening (SIS) method, have enabled the analysis of datasets where the number of predictors is much larger than the number of observations. Using an implementation of the SIS algorithm (called EPISIS), we used exhaustive search of the genome-wide, SNP-SNP interactome to identify and prioritize SNPs for interaction analysis. We identified a significant SNP pair, rs1345203 and rs1213205, associated with temporal lobe volume. We further examined the full-brain, voxelwise effects of the interaction in the ADNI dataset and separately in an independent dataset of healthy twins (QTIM). We found that each additional loading in the epistatic effect was associated with approximately 5% greater brain regional brain volume (a protective effect) in both the ADNI and QTIM samples.
Resumo:
The caudate is a subcortical brain structure implicated in many common neurological and psychiatric disorders. To identify specific genes associated with variations in caudate volume, structural magnetic resonance imaging and genome-wide genotypes were acquired from two large cohorts, the Alzheimer's Disease NeuroImaging Initiative (ADNI; N=734) and the Brisbane Adolescent/Young Adult Longitudinal Twin Study (BLTS; N=464). In a preliminary analysis of heritability, around 90% of the variation in caudate volume was due to genetic factors. We then conducted genome-wide association to find common variants that contribute to this relatively high heritability. Replicated genetic association was found for the right caudate volume at single-nucleotide polymorphism rs163030 in the ADNI discovery sample (P=2.36 × 10 -6) and in the BLTS replication sample (P=0.012). This genetic variation accounted for 2.79 and 1.61% of the trait variance, respectively. The peak of association was found in and around two genes, WDR41 and PDE8B, involved in dopamine signaling and development. In addition, a previously identified mutation in PDE8B causes a rare autosomal-dominant type of striatal degeneration. Searching across both samples offers a rigorous way to screen for genes consistently influencing brain structure at different stages of life. Variants identified here may be relevant to common disorders affecting the caudate.
Resumo:
Several genetic variants are thought to influence white matter (WM) integrity, measured with diffusion tensor imaging (DTI). Voxel based methods can test genetic associations, but heavy multiple comparisons corrections are required to adjust for searching the whole brain and for all genetic variants analyzed. Thus, genetic associations are hard to detect even in large studies. Using a recently developed multi-SNP analysis, we examined the joint predictive power of a group of 18 cholesterol-related single nucleotide polymorphisms (SNPs) on WM integrity, measured by fractional anisotropy. To boost power, we limited the analysis to brain voxels that showed significant associations with total serum cholesterol levels. From this space, we identified two genes with effects that replicated in individual voxel-wise analyses of the whole brain. Multivariate analyses of genetic variants on a reduced anatomical search space may help to identify SNPs with strongest effects on the brain from a broad panel of genes.
Resumo:
In this paper, we use an experimental design to compare the performance of elicitation rules for subjective beliefs. Contrary to previous works in which elicited beliefs are compared to an objective benchmark, we consider a purely subjective belief framework (confidence in one’s own performance in a cognitive task and a perceptual task). The performance of different elicitation rules is assessed according to the accuracy of stated beliefs in predicting success. We measure this accuracy using two main factors: calibration and discrimination. For each of them, we propose two statistical indexes and we compare the rules’ performances for each measurement. The matching probability method provides more accurate beliefs in terms of discrimination, while the quadratic scoring rule reduces overconfidence and the free rule, a simple rule with no incentives, which succeeds in eliciting accurate beliefs. Nevertheless, the matching probability appears to be the best mechanism for eliciting beliefs due to its performances in terms of calibration and discrimination, but also its ability to elicit consistent beliefs across measures and across tasks, as well as its empirical and theoretical properties.
Resumo:
The 3D Water Chemistry Atlas is an intuitive, open source, Web-based system that enables the three-dimensional (3D) sub-surface visualization of ground water monitoring data, overlaid on the local geological model (formation and aquifer strata). This paper firstly describes the results of evaluating existing virtual globe technologies, which led to the decision to use the Cesium open source WebGL Virtual Globe and Map Engine as the underlying platform. Next it describes the backend database and search, filtering, browse and analysis tools that were developed to enable users to interactively explore the groundwater monitoring data and interpret it spatially and temporally relative to the local geological formations and aquifers via the Cesium interface. The result is an integrated 3D visualization system that enables environmental managers and regulators to assess groundwater conditions, identify inconsistencies in the data, manage impacts and risks and make more informed decisions about coal seam gas extraction, waste water extraction, and water reuse.
Resumo:
In this study we present a combinatorial optimization method based on particle swarm optimization and local search algorithm on the multi-robot search system. Under this method, in order to create a balance between exploration and exploitation and guarantee the global convergence, at each iteration step if the distance between target and the robot become less than specific measure then a local search algorithm is performed. The local search encourages the particle to explore the local region beyond to reach the target in lesser search time. Experimental results obtained in a simulated environment show that biological and sociological inspiration could be useful to meet the challenges of robotic applications that can be described as optimization problems.
Resumo:
Previous qualitative research has highlighted that temporality plays an important role in relevance for clinical records search. In this study, an investigation is undertaken to determine the effect that the timespan of events within a patient record has on relevance in a retrieval scenario. In addition, based on the standard practise of document length normalisation, a document timespan normalisation model that specifically accounts for timespans is proposed. Initial analysis revealed that in general relevant patient records tended to cover a longer timespan of events than non-relevant patient records. However, an empirical evaluation using the TREC Medical Records track supports the opposite view that shorter documents (in terms of timespan) are better for retrieval. These findings highlight that the role of temporality in relevance is complex and how to effectively deal with temporality within a retrieval scenario remains an open question.
Resumo:
This report describes the development and simulation of a variable rate controller for a 6-degree of freedom nonlinear model. The variable rate simulation model represents an off the shelf autopilot. Flight experiment involves risks and can be expensive. Therefore a dynamic model to understand the performance characteristics of the UAS in mission simulation before actual flight test or to obtain parameters needed for the flight is important. The control and guidance is implemented in Simulink. The report tests the use of the model for air search and air sampling path planning. A GUI in which a set of mission scenarios, in which two experts (mission expert, i.e. air sampling or air search and an UAV expert) interact, is presented showing the benefits of the method.
Resumo:
Theories of search and search behavior can be used to glean insights and generate hypotheses about how people interact with retrieval systems. This paper examines three such theories, the long standing Information Foraging Theory, along with the more recently proposed Search Economic Theory and the Interactive Probability Ranking Principle. Our goal is to develop a model for ad-hoc topic retrieval using each approach, all within a common framework, in order to (1) determine what predictions each approach makes about search behavior, and (2) show the relationships, equivalences and differences between the approaches. While each approach takes a different perspective on modeling searcher interactions, we show that under certain assumptions, they lead to similar hypotheses regarding search behavior. Moreover, we show that the models are complementary to each other, but operate at different levels (i.e., sessions, patches and situations). We further show how the differences between the approaches lead to new insights into the theories and new models. This contribution will not only lead to further theoretical developments, but also enables practitioners to employ one of the three equivalent models depending on the data available.
Resumo:
This report describes a methodology for the design and coupling of a proton exchange membrane (PEM) Fuel Cell to an Unmanned Aerial Vehicle (UAV). The report summarizes existing work in the field, the type of UAV and the mission requirements, design the fuel cell system, simulation environment, and compares endurance and range to when the aircraft is fitted with a conventional internal combustion engine (ICE).
Resumo:
At the 2014 G20 held in Brisbane, Australia took the position that climate change is not an economic issue. Most others thought it was - especially the Turkish Prime Minister who is hosting the 2015 G20. It is certainly an economic issue. But, it is not just an economic issue - either in the source or the solution.
Resumo:
BACKGROUND: Genetic variation contributes to the risk of developing endometriosis. This review summarizes gene mapping studies in endometriosis and the prospects of finding gene pathways contributing to disease using the latest genome-wide strategies. METHODS: To identify candidate-gene association studies of endometriosis, a systematic literature search was conducted in PubMed of publications up to 1 April 2008, using the search terms 'endometriosis' plus 'allele' or 'polymorphism' or 'gene'. Papers included were those with information on both case and control selection, showed allelic and/or genotypic results for named germ-line polymorphisms and were published in the English language. RESULTS: Genetic variants in 76 genes have been examined for association, but none shows convincing evidence of replication in multiple studies. There is evidence for genetic linkage to chromosomes 7 and 10, but the genes (or variants) in these regions contributing to disease risk have yet to be identified. Genome-wide association is a powerful method that has been successful in locating genetic variants contributing to a range of common diseases. Several groups are planning these studies in endometriosis. For this to be successful, the endometriosis research community must work together to genotype sufficient cases, using clearly defined disease classifications, and conduct the necessary replication studies in several thousands of cases and controls. CONCLUSIONS: Genes with convincing evidence for association with endometriosis are likely to be identified in large genome-wide studies. This will provide a starting point for functional and biological studies to develop better diagnosis and treatment for this debilitating disease.
Resumo:
This research is a step forward in discovering knowledge from databases of complex structure like tree or graph. Several data mining algorithms are developed based on a novel representation called Balanced Optimal Search for extracting implicit, unknown and potentially useful information like patterns, similarities and various relationships from tree data, which are also proved to be advantageous in analysing big data. This thesis focuses on analysing unordered tree data, which is robust to data inconsistency, irregularity and swift information changes, hence, in the era of big data it becomes a popular and widely used data model.