599 resultados para School textbook
Resumo:
This paper argues for a renewed focus on statistical reasoning in the elementary school years, with opportunities for children to engage in data modeling. Data modeling involves investigations of meaningful phenomena, deciding what is worthy of attention, and then progressing to organizing, structuring, visualizing, and representing data. Reported here are some findings from a two-part activity (Baxter Brown’s Picnic and Planning a Picnic) implemented at the end of the second year of a current three-year longitudinal study (grade levels 1-3). Planning a Picnic was also implemented in a grade 7 class to provide an opportunity for the different age groups to share their products. Addressed here are the grade 2 children’s predictions for missing data in Baxter Brown’s Picnic, the questions posed and representations created by both grade levels in Planning a Picnic, and the metarepresentational competence displayed in the grade levels’ sharing of their products for Planning a Picnic.
Resumo:
This paper reports a 2-year longitudinal study on the effectiveness of the Pattern and Structure Mathematical Awareness Program (PASMAP) on students’ mathematical development. The study involved 316 Kindergarten students in 17 classes from four schools in Sydney and Brisbane. The development of the PASA assessment interview and scale are presented. The intervention program provided explicit instruction in mathematical pattern and structure that enhanced the development of students’ spatial structuring, multiplicative reasoning, and emergent generalisations. This paper presents the initial findings of the impact of the PASMAP and illustrates students’ structural development.
Resumo:
Women are underrepresented in science, technology, engineering and mathematics (STEM) university coursework, reflecting long-standing gender issues that have existed in core middle-school STEM subject areas. Using data from a survey and written responses, we report on findings following the introduction of engineering education in middle school classes across three schools (grade level 7, n=122). The engineering experiences fused science, technology and mathematics concepts. The survey revealed higher percentages for girls than boys in 13 of the 24 items; however there were six items with a 20% difference in their perceptions about learning in STEM. For instance, despite girls recording that they have been provided equal or more opportunities than boys in STEM, they believed they do not do as well as boys (80% boys, 48% girls) or want to seek a career in STEM (39% boys, 17% girls). The written responses revealed gender differences across a number of themes in the students’ responses, including resources, group work, the nature and type of learning experiences, content knowledge, and teachers’ instructional style. Exposing students to STEM education facilitates an awareness of their learning and may assist girls to consider studying STEM subjects or STEM careers.
Resumo:
The world’s increasing complexity, competitiveness, interconnectivity, and dependence on technology generate new challenges for nations and individuals that cannot be met by continuing education as usual (Katehi, Pearson, & Feder, 2009). With the proliferation of complex systems have come new technologies for communication, collaboration, and conceptualisation. These technologies have led to significant changes in the forms of mathematical and scientific thinking that are required beyond the classroom. Modelling, in its various forms, can develop and broaden children’s mathematical and scientific thinking beyond the standard curriculum. This paper first considers future competencies in the mathematical sciences within an increasingly complex world. Next, consideration is given to interdisciplinary problem solving and models and modelling. Examples of complex, interdisciplinary modelling activities across grades are presented, with data modelling in 1st grade, model-eliciting in 4th grade, and engineering-based modelling in 7th-9th grades.
Resumo:
This key planning textbook on designing healthy and sustainable communities informs planners about community life and the processes of planning and equips them with the essential knowledge and skills they need to organise change and improve the quality of urban living. The author examines the impacts of social and economic change on community life and organization and explores ways in which these changes can be planned and managed. Community planning is presented as a means to balance and integrate beneficial change with the maintenance of valued cultural traditions and life styles. This involves bringing together fields of study and practice including urban and regional planning, design, communication, housing, community organization, employment, transport, and governance. Links drawn between personal values, human activities, physical spaces and societal governance assist this process of synthesis. Establishing a common vocabulary to discuss planning - for urban and regional planners, including health planners; and open space planners - enables both students and practitioners to work with each other and with those for whom they provide services to create stronger, healthier and more sustainable communities. The aims and roles of community planning are explored and the key planning operations are explained, including the phases and applications of community planning method; the planning and location of community facilities; the roles of design in shaping responsive community spaces; and the capacity of different types of community governance to improve the relations between citizens and societies. The book is organized into two main parts: after the first three chapters have established the interests and scope of community planning, the next six each moves from an account of issues and theoretical concerns, through a review of case studies, to summaries of leading practice. This positive approach is intended to encourage readers to develop their own capacities for effective participation and action. The concluding chapter draws together the contributions of preceding ones to demonstrate the integrity of the community planning process
Resumo:
The editor, Gerard de Valence, points out in the preface, this book is neither a textbook nor a guide to what is done by construction managers and construction economists – read quantity surveyors and the like. Rather, de Valence notes it comprises a collection of chapters each of which focus on matters at the industry level and, in doing so, illustrates that a substantially improved understanding of the building and construction industry can be gained beyond the economics of delivering projects. Before giving some thought to how far each of the chapters achieve this, it’s worth reflecting on the virtues of developing construction economics as its own discipline or sub-discipline in general economics and the bold manner by which de Valence is proposing we do this. That is, de Valence proposes partitioning industry and project economics - as explained in the preface and in Chapter 1. de Valence’s view that “the time seems right” for these developments is also worthy of some consideration.
Resumo:
Background: The objective of this study was to scrutinize number line estimation behaviors displayed by children in mathematics classrooms during the first three years of schooling. We extend existing research by not only mapping potential logarithmic-linear shifts but also provide a new perspective by studying in detail the estimation strategies of individual target digits within a number range familiar to children. Methods: Typically developing children (n = 67) from Years 1 – 3 completed a number-to-position numerical estimation task (0-20 number line). Estimation behaviors were first analyzed via logarithmic and linear regression modeling. Subsequently, using an analysis of variance we compared the estimation accuracy of each digit, thus identifying target digits that were estimated with the assistance of arithmetic strategy. Results: Our results further confirm a developmental logarithmic-linear shift when utilizing regression modeling; however, uniquely we have identified that children employ variable strategies when completing numerical estimation, with levels of strategy advancing with development. Conclusion: In terms of the existing cognitive research, this strategy factor highlights the limitations of any regression modeling approach, or alternatively, it could underpin the developmental time course of the logarithmic-linear shift. Future studies need to systematically investigate this relationship and also consider the implications for educational practice.
Resumo:
In this study we set out to dissociate the developmental time course of automatic symbolic number processing and cognitive control functions in grade 1-3 British primary school children. Event-related potential (ERP) and behavioral data were collected in a physical size discrimination numerical Stroop task. Task-irrelevant numerical information was processed automatically already in grade 1. Weakening interference and strengthening facilitation indicated the parallel development of general cognitive control and automatic number processing. Relationships among ERP and behavioral effects suggest that control functions play a larger role in younger children and that automaticity of number processing increases from grade 1 to 3.
Resumo:
Diminished student interest in science, technology, engineering and mathematics (STEM) is recognised by educators, researchers and public policy makers as a concerning global trend. Inviting stakeholders like scientists and industry specialists to discuss their work is one means schools use to facilitate student engagement in the sciences. However, these visits generally comprise one-off sessions with minimal relevance to students’ particular and ongoing learning needs. This case study investigated coteaching and cogenerative dialoguing with parents in teaching a Year-8 multidisciplinary unit with science and technology foci. Two parents cotaught alongside the resident teacher and researcher over eight months. This paper concentrates on one parent, a medical scientist by profession. Data sources included video and audio recordings of cogenerative dialogues and classroom interactions, student work samples and journal entries. Data were interrogated using the sociological constructs of fields and capitals and the dialectic of structure|agency. The findings reveal how (a) the parent’s science and technology knowledge was tailored to the students’ needs initially and continually and (b) student-generated data indicated enhanced engagement in science and technology. The research speaks to schools and governments about enhancing STEM education by furthering collaborative relationships with relevant stakeholders.
Resumo:
This study investigated the ability of primary school teachers to recognise and refer children with anxiety symptoms. Two hundred and ninety-nine primary school teachers completed a questionnaire exploring their recognition and referral responses to five hypothetical vignettes that described boys and girls with varying severity of anxiety symptoms. Results revealed that teachers were generally able to recognise and make the decision to refer children with severe levels of anxiety. However, they had difficulty distinguishing between children with moderate anxiety symptoms and a severe anxiety disorder. Female teachers were more likely to refer children than were male teachers. The implications and future research are discussed.
Resumo:
Research Findings: The transition to school is a major developmental milestone, and behavior tendencies already evident at the point of school entry can impact upon a child's subsequent social and academic adjustment. The current study aimed to investigate stability and change in the social behavior of girls and boys across the transition from day care to 1st grade. Teacher ratings and peer nominations for prosocial and antisocial behavior were obtained for 248 children belonging to 2 cohorts: school transitioning (n = 118) and day care remaining (n = 130). Data were gathered again from all children 1 year later, following the older group's entry into school. Teacher ratings of prosocial and antisocial behavior significantly predicted teacher ratings of the same behavior at Time 2 for both cohorts. Peer reports of antisocial behavior also showed significant stability, whereas stability of peer-reported prosocial behavior varied as a function of behavior type. Practice or Policy: The results contribute to understanding of trends in early childhood social behavior that potentially influence long-term developmental trajectories. Identification of some behaviors as more stable in early childhood than others, regardless of school entry, provides useful information for both the type and timing of early interventions. © 2010 Taylor & Francis Group, LLC.
Resumo:
School connectedness is “the extent to which students feel personally accepted, respected, included, and supported by others in the school social environment” (Goodenow, 1993, p. 80). It is an important predictor of school violence, as well as related outcomes such as health risk behaviors and mental health. Connectedness reduces initial incidents of violence, buffers the effect of violence exposure, and promotes an anti-bullying culture. School violence and bullying have also been associated with a subsequent decrease in school connectedness. Several theories contribute to our understanding of these relations but the construct, theoretical underpinnings, and pathways in and out of school connectedness require further examination. Despite numerous promising interventions, this line of research is in its infancy. Interventions harnessing this protective factor may have a ubiquitous positive impact on adolescent development.
Resumo:
This paper examines parents' responses to key factors associated with mode choices for school trips. The research was conducted with parents of elementary school students in Denver Colorado as part of a larger investigation of school travel. School-based active travel programs aim to encourage students to walk or bike to school more frequently. To that end, planning research has identified an array of factors associated with parents' decisions to drive children to school. Many findings are interpreted as ‘barriers’ to active travel, implying that parents have similar objectives with respect to travel mode choices and that parents respond similarly and consistently to external conditions. While the conclusions are appropriate in forecasting demand and mode share with large populations, they are generally too coarse for programs that aim to influence travel behavior with individuals and small groups. This research uses content analysis of interview transcripts to examine the contexts of factors associated with parents' mode choices for trips to and from elementary school. Short, semi-structured interviews were conducted with 65 parents from 12 Denver Public Elementary Schools that had been selected to receive 2007–08 Safe Routes to School non-infrastructure grants. Transcripts were analyzed using Nvivo 8.0 to find out how parents respond to selected factors that are often described in planning literature as ‘barriers’ to active travel. Two contrasting themes emerged from the analysis: barrier elimination and barrier negotiation. Regular active travel appears to diminish parents' perceptions of barriers so that negotiation becomes second nature. Findings from this study suggest that intervention should build capacity and inclination in order to increase rates of active travel.
Resumo:
In this paper I consider a role for risk understanding in school science education. Grounds for this are described in terms of current sociological analyses of the contemporary world as a ‘risk society’ and recent public understanding of science studies where science and risk are concerns commonly linked within the wider community. These concerns connect with support amongst many science educators for the goal of science education for citizenship. From this perspective scientific literacy for decision making on contemporary socioscientific issues is central. I argue that in such decision making risk understanding has an important role to play. I examine some of the challenges its inclusion in school science presents to science teachers, review previous writing about risk in the science education literature and consider how knowledge about risk might be addressed in school science. I also outline the varying conceptions of risk and suggest some future research directions which would support the inclusion of risk in classroom discussions of socioscientific issues.