311 resultados para STATISTICAL METHODOLOGY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity network investment and asset management require accurate estimation of future demand in energy consumption within specified service areas. For this purpose, simple models are typically developed to predict future trends in electricity consumption using various methods and assumptions. This paper presents a statistical model to predict electricity consumption in the residential sector at the Census Collection District (CCD) level over the state of New South Wales, Australia, based on spatial building and household characteristics. Residential household demographic and building data from the Australian Bureau of Statistics (ABS) and actual electricity consumption data from electricity companies are merged for 74 % of the 12,000 CCDs in the state. Eighty percent of the merged dataset is randomly set aside to establish the model using regression analysis, and the remaining 20 % is used to independently test the accuracy of model prediction against actual consumption. In 90 % of the cases, the predicted consumption is shown to be within 5 kWh per dwelling per day from actual values, with an overall state accuracy of -1.15 %. Given a future scenario with a shift in climate zone and a growth in population, the model is used to identify the geographical or service areas that are most likely to have increased electricity consumption. Such geographical representation can be of great benefit when assessing alternatives to the centralised generation of energy; having such a model gives a quantifiable method to selecting the 'most' appropriate system when a review or upgrade of the network infrastructure is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For clinical use, in electrocardiogram (ECG) signal analysis it is important to detect not only the centre of the P wave, the QRS complex and the T wave, but also the time intervals, such as the ST segment. Much research focused entirely on qrs complex detection, via methods such as wavelet transforms, spline fitting and neural networks. However, drawbacks include the false classification of a severe noise spike as a QRS complex, possibly requiring manual editing, or the omission of information contained in other regions of the ECG signal. While some attempts were made to develop algorithms to detect additional signal characteristics, such as P and T waves, the reported success rates are subject to change from person-to-person and beat-to-beat. To address this variability we propose the use of Markov-chain Monte Carlo statistical modelling to extract the key features of an ECG signal and we report on a feasibility study to investigate the utility of the approach. The modelling approach is examined with reference to a realistic computer generated ECG signal, where details such as wave morphology and noise levels are variable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter addresses data modelling as a means of promoting statistical literacy in the early grades. Consideration is first given to the importance of increasing young children’s exposure to statistical reasoning experiences and how data modelling can be a rich means of doing so. Selected components of data modelling are then reviewed, followed by a report on some findings from the third-year of a three-year longitudinal study across grades one through three.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At NDSS 2012, Yan et al. analyzed the security of several challenge-response type user authentication protocols against passive observers, and proposed a generic counting based statistical attack to recover the secret of some counting based protocols given a number of observed authentication sessions. Roughly speaking, the attack is based on the fact that secret (pass) objects appear in challenges with a different probability from non-secret (decoy) objects when the responses are taken into account. Although they mentioned that a protocol susceptible to this attack should minimize this difference, they did not give details as to how this can be achieved barring a few suggestions. In this paper, we attempt to fill this gap by generalizing the attack with a much more comprehensive theoretical analysis. Our treatment is more quantitative which enables us to describe a method to theoretically estimate a lower bound on the number of sessions a protocol can be safely used against the attack. Our results include 1) two proposed fixes to make counting protocols practically safe against the attack at the cost of usability, 2) the observation that the attack can be used on non-counting based protocols too as long as challenge generation is contrived, 3) and two main design principles for user authentication protocols which can be considered as extensions of the principles from Yan et al. This detailed theoretical treatment can be used as a guideline during the design of counting based protocols to determine their susceptibility to this attack. The Foxtail protocol, one of the protocols analyzed by Yan et al., is used as a representative to illustrate our theoretical and experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of content and meta–data has long been the subject of most Twitter studies, however such research only tells part of the story of the development of Twitter as a platform. In this work, we introduce a methodology to determine the growth patterns of individual users of the platform, a technique we refer to as follower accession, and through a number of case studies consider the factors which lead to follower growth, and the identification of non–authentic followers. Finally, we consider what such an approach tells us about the history of the platform itself, and the way in which changes to the new user signup process have impacted upon users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Timely diagnosis and reporting of patient symptoms in hospital emergency departments (ED) is a critical component of health services delivery. However, due to dispersed information resources and a vast amount of manual processing of unstructured information, accurate point-of-care diagnosis is often difficult. Aims The aim of this research is to report initial experimental evaluation of a clinician-informed automated method for the issue of initial misdiagnoses associated with delayed receipt of unstructured radiology reports. Method A method was developed that resembles clinical reasoning for identifying limb abnormalities. The method consists of a gazetteer of keywords related to radiological findings; the method classifies an X-ray report as abnormal if it contains evidence contained in the gazetteer. A set of 99 narrative reports of radiological findings was sourced from a tertiary hospital. Reports were manually assessed by two clinicians and discrepancies were validated by a third expert ED clinician; the final manual classification generated by the expert ED clinician was used as ground truth to empirically evaluate the approach. Results The automated method that attempts to individuate limb abnormalities by searching for keywords expressed by clinicians achieved an F-measure of 0.80 and an accuracy of 0.80. Conclusion While the automated clinician-driven method achieved promising performances, a number of avenues for improvement were identified using advanced natural language processing (NLP) and machine learning techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interest in utilising multiple heterogeneous Unmanned Aerial Vehicles (UAVs) in close proximity is growing rapidly. As such, many challenges are presented in the effective coordination and management of these UAVs; converting the current n-to-1 paradigm (n operators operating a single UAV) to the 1-to-n paradigm (one operator managing n UAVs). This paper introduces an Information Abstraction methodology used to produce the functional capability framework initially proposed by Chen et al. and its Level Of Detail (LOD) indexing scale. This framework was validated through comparing the operator workload and Situation Awareness (SA) of three experiment scenarios involving multiple autonomously heterogeneous UAVs. The first scenario was set in a high LOD configuration with highly abstracted UAV functional information; the second scenario was set in a mixed LOD configuration; and the final scenario was set in a low LOD configuration with maximal UAV functional information. Results show that there is a significant statistical decrease in operator workload when a UAV’s functional information is displayed at its physical form (low LOD - maximal information) when comparing to the mixed LOD configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of existing motorway traffic safety studies using disaggregate traffic flow data aim at developing models for identifying real-time traffic risks by comparing pre-crash and non-crash conditions. One of serious shortcomings in those studies is that non-crash conditions are arbitrarily selected and hence, not representative, i.e. selected non-crash data might not be the right data comparable with pre-crash data; the non-crash/pre-crash ratio is arbitrarily decided and neglects the abundance of non-crash over pre-crash conditions; etc. Here, we present a methodology for developing a real-time MotorwaY Traffic Risk Identification Model (MyTRIM) using individual vehicle data, meteorological data, and crash data. Non-crash data are clustered into groups called traffic regimes. Thereafter, pre-crash data are classified into regimes to match with relevant non-crash data. Among totally eight traffic regimes obtained, four highly risky regimes were identified; three regime-based Risk Identification Models (RIM) with sufficient pre-crash data were developed. MyTRIM memorizes the latest risk evolution identified by RIM to predict near future risks. Traffic practitioners can decide MyTRIM’s memory size based on the trade-off between detection and false alarm rates. Decreasing the memory size from 5 to 1 precipitates the increase of detection rate from 65.0% to 100.0% and of false alarm rate from 0.21% to 3.68%. Moreover, critical factors in differentiating pre-crash and non-crash conditions are recognized and usable for developing preventive measures. MyTRIM can be used by practitioners in real-time as an independent tool to make online decision or integrated with existing traffic management systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article develops methods for spatially predicting daily change of dissolved oxygen (Dochange) at both sampled locations (134 freshwater sites in 2002 and 2003) and other locations of interest throughout a river network in South East Queensland, Australia. In order to deal with the relative sparseness of the monitoring locations in comparison to the number of locations where one might want to make predictions, we make a classification of the river and stream locations. We then implement optimal spatial prediction (ordinary and constrained kriging) from geostatistics. Because of their directed-tree structure, rivers and streams offer special challenges. A complete approach to spatial prediction on a river network is given, with special attention paid to environmental exceedances. The methodology is used to produce a map of Dochange predictions for 2003. Dochange is one of the variables measured as part of the Ecosystem Health Monitoring Program conducted within the Moreton Bay Waterways and Catchments Partnership.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cotton strip assay (CSA) is an established technique for measuring soil microbial activity. The technique involves burying cotton strips and measuring their tensile strength after a certain time. This gives a measure of the rotting rate, R, of the cotton strips. R is then a measure of soil microbial activity. This paper examines properties of the technique and indicates how the assay can be optimised. Humidity conditioning of the cotton strips before measuring their tensile strength reduced the within and between day variance and enabled the distribution of the tensile strength measurements to approximate normality. The test data came from a three-way factorial experiment (two soils, two temperatures, three moisture levels). The cotton strips were buried in the soil for intervals of time ranging up to 6 weeks. This enabled the rate of loss of cotton tensile strength with time to be studied under a range of conditions. An inverse cubic model accounted for greater than 90% of the total variation within each treatment combination. This offers support for summarising the decomposition process by a single parameter R. The approximate variance of the decomposition rate was estimated from a function incorporating the variance of tensile strength and the differential of the function for the rate of decomposition, R, with respect to tensile strength. This variance function has a minimum when the measured strength is approximately 2/3 that of the original strength. The estimates of R are almost unbiased and relatively robust against the cotton strips being left in the soil for more or less than the optimal time. We conclude that the rotting rate X should be measured using the inverse cubic equation, and that the cotton strips should be left in the soil until their strength has been reduced to about 2/3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of rurality on physical and mental health are examined in analyses of a national dataset, the Community Tracking Survey, 2000-2001, that includes individual level observations from household interviews. We merge it with county level data reflecting community resources and use econometric methods to analyze this multi-level data. The statistical analysis of the impact of the choice of definition on outcomes and on the estimates and significance of explanatory variables in the model is presented using modern econometric methods, and differences in results for mental health and physical health are evaluated. © 2010 Springer Science+Business Media, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of determining optimal designs for biological process models with intractable likelihoods, with the goal of parameter inference. The Bayesian approach is to choose a design that maximises the mean of a utility, and the utility is a function of the posterior distribution. Therefore, its estimation requires likelihood evaluations. However, many problems in experimental design involve models with intractable likelihoods, that is, likelihoods that are neither analytic nor can be computed in a reasonable amount of time. We propose a novel solution using indirect inference (II), a well established method in the literature, and the Markov chain Monte Carlo (MCMC) algorithm of Müller et al. (2004). Indirect inference employs an auxiliary model with a tractable likelihood in conjunction with the generative model, the assumed true model of interest, which has an intractable likelihood. Our approach is to estimate a map between the parameters of the generative and auxiliary models, using simulations from the generative model. An II posterior distribution is formed to expedite utility estimation. We also present a modification to the utility that allows the Müller algorithm to sample from a substantially sharpened utility surface, with little computational effort. Unlike competing methods, the II approach can handle complex design problems for models with intractable likelihoods on a continuous design space, with possible extension to many observations. The methodology is demonstrated using two stochastic models; a simple tractable death process used to validate the approach, and a motivating stochastic model for the population evolution of macroparasites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents the field applications and validations for the controlled Monte Carlo data generation scheme. This scheme was previously derived to assist the Mahalanobis squared distance–based damage identification method to cope with data-shortage problems which often cause inadequate data multinormality and unreliable identification outcome. To do so, real-vibration datasets from two actual civil engineering structures with such data (and identification) problems are selected as the test objects which are then shown to be in need of enhancement to consolidate their conditions. By utilizing the robust probability measures of the data condition indices in controlled Monte Carlo data generation and statistical sensitivity analysis of the Mahalanobis squared distance computational system, well-conditioned synthetic data generated by an optimal controlled Monte Carlo data generation configurations can be unbiasedly evaluated against those generated by other set-ups and against the original data. The analysis results reconfirm that controlled Monte Carlo data generation is able to overcome the shortage of observations, improve the data multinormality and enhance the reliability of the Mahalanobis squared distance–based damage identification method particularly with respect to false-positive errors. The results also highlight the dynamic structure of controlled Monte Carlo data generation that makes this scheme well adaptive to any type of input data with any (original) distributional condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A catchment-scale multivariate statistical analysis of hydrochemistry enabled assessment of interactions between alluvial groundwater and Cressbrook Creek, an intermittent drainage system in southeast Queensland, Australia. Hierarchical cluster analyses and principal component analysis were applied to time-series data to evaluate the hydrochemical evolution of groundwater during periods of extreme drought and severe flooding. A simple three-dimensional geological model was developed to conceptualise the catchment morphology and the stratigraphic framework of the alluvium. The alluvium forms a two-layer system with a basal coarse-grained layer overlain by a clay-rich low-permeability unit. In the upper and middle catchment, alluvial groundwater is chemically similar to streamwater, particularly near the creek (reflected by high HCO3/Cl and K/Na ratios and low salinities), indicating a high degree of connectivity. In the lower catchment, groundwater is more saline with lower HCO3/Cl and K/Na ratios, notably during dry periods. Groundwater salinity substantially decreased following severe flooding in 2011, notably in the lower catchment, confirming that flooding is an important mechanism for both recharge and maintaining groundwater quality. The integrated approach used in this study enabled effective interpretation of hydrological processes and can be applied to a variety of hydrological settings to synthesise and evaluate large hydrochemical datasets.