273 resultados para Planar localized structures
Resumo:
This paper presents a discussion on the use of MIMO and SISO techniques for identification of the radiation force terms in models for surface vessels. We compare and discuss two techniques recently proposed in literature for this application: time domain identification and frequency domain identification. We compare the methods in terms of estimates model order, accuracy of the fit, use of the available information, and ease of use and implementation.
Resumo:
We present an approach for the inspection of vertical pole-like infrastructure using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structures, such as light and power distribution poles, is a time consuming, dangerous and expensive task with high operator workload. To address these issues, we propose a VTOL platform that can operate at close-quarters, whilst maintaining a safe stand-off distance and rejecting environmental disturbances. We adopt an Image based Visual Servoing (IBVS) technique using only two line features to stabilise the vehicle with respect to a pole. Visual, inertial and sonar data are used, making the approach suitable for indoor or GPS-denied environments. Results from simulation and outdoor flight experiments demonstrate the system is able to successfully inspect and circumnavigate a pole.
Resumo:
Spatial variation of seismic ground motions is caused by incoherence effect, wave passage, and local site conditions. This study focuses on the effects of spatial variation of earthquake ground motion on the responses of adjacent reinforced concrete (RC) frame structures. The adjacent buildings are modeled considering soil-structure interaction (SSI) so that the buildings can be interacted with each other under uniform and non-uniform ground motions. Three different site classes are used to model the soil layers of SSI system. Based on fast Fourier transformation (FFT), spatially correlated non-uniform ground motions are generated compatible with known power spectrum density function (PSDF) at different locations. Numerical analyses are carried out to investigate the displacement responses and the absolute maximum base shear forces of adjacent structures subjected to spatially varying ground motions. The results are presented in terms of related parameters affecting the structural response using three different types of soil site classes. The responses of adjacent structures have changed remarkably due to spatial variation of ground motions. The effect can be significant on rock site rather than clay site.
Resumo:
The MOCVD assisted formation of nested WS2 inorganic fullerenes (IF-WS2) was performed by enhancing surface diffusion with iodine, and fullerene growth was monitored by taking TEM snapshots of intermediate products. The internal structure of the core-shell nanoparticles was studied using scanning electron microscopy (SEM) after cross-cutting with a focused ion beam (FIB). Lamellar reaction intermediates were found occluded in the fullerene particles. In contrast to carbon fullerenes, layered metal chalcogenides prefer the formation of planar, plate-like structures where the dangling bonds at the edges are stabilized by excess S atoms. The effects of the reaction and annealing temperatures on the composition and morphology of the final product were investigated, and the strength of the WS2 shell was measured by intermittent contact-mode AFM. The encapsulated lamellar structures inside the hollow spheres may lead to enhanced tribological activities.
Resumo:
The transcriptome response of Atlantic salmon (Salmo salar) displaying advanced stages of amoebic gill disease (AGD) was investigated. Naïve smolt were challenged with AGD for 19 days, at which time all fish were euthanized and their severity of infection quantified through histopathological scoring. Gene expression profiles were compared between heavily infected and naïve individuals using a 17 K Atlantic salmon cDNA microarray with real-time quantitative RT-PCR (qPCR) verification. Expression profiles were examined in the gill, anterior kidney, and liver. Twenty-seven transcripts were significantly differentially expressed within the gill; 20 of these transcripts were down-regulated in the AGD-affected individuals compared with naïve individuals. In contrast, only nine transcripts were significantly differentially expressed within the anterior kidney and five within the liver. Again the majority of these transcripts were down-regulated within the diseased individuals. A down-regulation of transcripts involved in apoptosis (procathepsin L, cathepsin H precursor, and cystatin B) was observed in AGD-affected Atlantic salmon. Four transcripts encoding genes with antioxidant properties also were down-regulated in AGD-affected gill tissue according to qPCR analysis. The most up-regulated transcript within the gill was an unknown expressed sequence tag (EST) whose expression was 218-fold (± SE 66) higher within the AGD affected gill tissue. Our results suggest that Atlantic salmon experiencing advanced stages of AGD demonstrate general down-regulation of gene expression, which is most pronounced within the gill. We propose that this general gene suppression is parasite-mediated, thus allowing the parasite to withstand or ameliorate the host response. © 2008 Springer Science+Business Media, LLC.
Resumo:
Red blood cells (RBCs) are nonnucleated liquid capsules, enclosed in deformable viscoelastic membranes with complex three dimensional geometrical structures. Generally, RBC membranes are highly incompressible and resistant to areal changes. However, RBC membranes show a planar shear deformation and out of plane bending deformation. The behaviour of RBCs in blood vessels is investigated using numerical models. All the characteristics of RBC membranes should be addressed to develop a more accurate and stable model. This article presents an effective methodology to model the three dimensional geometry of the RBC membrane with the aid of commercial software COMSOL Multiphysics 4.2a and Fortran programming. Initially, a mesh is generated for a sphere using the COMSOL Multiphysics software to represent the RBC membrane. The elastic energy of the membrane is considered to determine a stable membrane shape. Then, the actual biconcave shape of the membrane is obtained based on the principle of virtual work, when the total energy is minimised. The geometry of the RBC membrane could be used with meshfree particle methods to simulate motion and deformation of RBCs in micro-capillaries
Resumo:
Summary form only given. Geometric simplicity, efficiency and polarization purity make slot antenna arrays ideal solutions for many radar, communications and navigation applications, especially when high power, light weight and limited scan volume are priorities. Resonant arrays of longitudinal slots have a slot spacing of one-half guide wavelength at the design frequency, so that the slots are located at the standing wave peaks. Planar arrays are implemented using a number of rectangular waveguides (branch line guides), arranged side-by-side, while waveguides main lines located behind and at right angles to the branch lines excite the radiating waveguides via centered-inclined coupling slots. Planar slotted waveguide arrays radiate broadside beams and all radiators are designed to be in phase.
Resumo:
Multidimensional data are getting increasing attention from researchers for creating better recommender systems in recent years. Additional metadata provides algorithms with more details for better understanding the interaction between users and items. While neighbourhood-based Collaborative Filtering (CF) approaches and latent factor models tackle this task in various ways effectively, they only utilize different partial structures of data. In this paper, we seek to delve into different types of relations in data and to understand the interaction between users and items more holistically. We propose a generic multidimensional CF fusion approach for top-N item recommendations. The proposed approach is capable of incorporating not only localized relations of user-user and item-item but also latent interaction between all dimensions of the data. Experimental results show significant improvements by the proposed approach in terms of recommendation accuracy.
Resumo:
Chronic difficulties arising from mild brain injury (TBI) are difficult to predict because the processes underlying changes after TBI are poorly understood. In mild brain injury the extent of neuropsychiatric and cognitive symptoms correspond poorly to overt tissue loss (Barth 1983; Liu 2010). Cellular, immune and hormonal cascades occurring after injury and continuing during the healing process may impact uninjured brain regions sensitive to the effects of physiological and emotional stress, which receive projections from the injury site. Changes in these most basic properties due to injury or disease have profound implications for virtually every aspect of brain function through disruption of neurotransmitter, neuroendocrine and metabolic systems. In order to screen for changes in transmitter and metabolic activity, in this study we developed Single voxel proton Magnetic Resonance Spectroscopy (1H-MRS) for use in both injured and control animals. We first evaluated if 1H-MRS could be used to evaluate in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus in both control and injured animals after controlled cortical impact injury to the rat prefrontal cortex. We found that metabolite measurements for Myo-Inositol, Choline, creatine, Glutamate+Glutamine, and N-acetyl-acetate are attainable in deep brain structures in vivo in injured and controls rats. We next seek to evaluate longitudinally, in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus during the first month after controlled cortical impact injury to the rat prefrontal cortex. These ongoing studies will provide data on the changes in transmitters and metabolites over time in injured and non-injured subjects. These studies address some of the fundamental questions about how mild brain injury has such diverse effects on overall brain health and function.
Resumo:
The structures of the 1:1 anhydrous salts of nicotine (NIC) with 3,5-dinitrosalicylic acid (DNSA) and 5-sulfosalicylic acid (5-SSA), namely (1R,2S)-1-methyl-2-(3-pyridyl)-1H-pyrrolidin-1-ium 2-carboxy-4,6-dinitrophenolate, C10H15N2+ C7H3N2O7-, (I) and (1R,2S)-1-methyl-2-(3-pyridyl)-1H-pyrrolidin-1-ium 3-carboxy-4-hydroxybenzenesulfonate, C10H15N2+ C7H5O6S-, (II) are reported. The asymmetric units of both (I) and (II) comprise two independent nicotinium cations (C and D) and either two DNSA or two 5-SSA anions (A and B), respectively. One of the DNSA anions shows a 25% rotational disorder in the benzene ring system. In the crystal of (I), inter-unit pyrrolidinium N-H...N(pyridine) hydrogen bonds generate zigzag NIC cation chains which extend along a while the DNSA anions are not involved in any formal inter-species hydrogen bonding but instead form pi--pi associated stacks which parallel the NIC chains along a [ring centroid separation, 3.857(2)A]. Weak C-H...O interactions between chain substructures give an overall three-dimensional structure. With (II), A and B anions form independent zigzag chains with C and D cations, respectively, through carboxylic acid O-H...N(pyridine) hydrogen bonds. These chains, which extend along b are pseudo-centrosymmetrically related and give pi--pi interactions between the benzene rings of anions A and B and the pyridine rings of the NIC cations C and D, respectively [ring centroid separations, 3.6422(19) and 3.7117(19)A]. Present also are weak intermolecular C-H...O hydrogen-bonding interactions between the chains, giving an overall three-dimensional structure.
Resumo:
The structures of the ammonium salts of phenoxyacetic acid, NH4+ C8H6O3- (I), (4-fluorophenoxy)acetic acid NH4+ C8H5FO3- (II) and the herbicidally active (4-chloro-2-methylphenoxy)acetic acid (MCPA), NH4+ C9H8ClO3-. 0.5(H2O) (III) have been determined. All have two-dimensional layered structures based on inter-species ammonium N-H...O hydrogen-bonding associations which give core substructures consisting primarily of conjoined cyclic motifs. Crystals of (I) and (II) are isomorphous with the core comprising R2/1(5), R2/1(4) and centrosymmetric R2/4(8) ring motifs, giving two-dimensional layers lying parallel to (100). In (III), the water molecule of solvation lies on a crystallographic twofold rotation axis and bridges two carboxyl O-atoms in an R4/4(12) hydrogen-bonded motif, creating two R3/4(10) rings which together with a conjoined centrosymmetric R2/4(8) ring incorporating both ammonium cations, generate two-dimensional layers lying parallel to (100). No pi-pi ring associations are present in any of the structures.
Resumo:
Cold-formed steel members have many advantages over hot-rolled steel members. However, they are susceptible to various buckling modes at stresses below the yield stress of the member because of their relatively high width-to-thickness ratio. Web crippling is a form of localized failure mode that can occur when the members are subjected to transverse high concentrated loadings and/or reactions. The four common loading conditions are the end-one-flange (EOF), interior-one-flange (IOF), end-two-flange (ETF) and interior-two-flange (ITF) loadings. Recently a test method has been proposed by AISI to obtain the web crippling capacities under these four loading conditions. Using this test method 42 tests were conducted in this research to investigate the web crippling behaviour and strengths of unlipped channels with stocky webs under ETF and ITF cases. DuraGal sections having a nominal yield stress of 450 MPa were tested with different web slenderness and bearing lengths. The flanges of these channel sections were not fastened to the supports. In this research the suitability of the currently available design rules for unlipped channels subject to web crippling was investigated, and suitable modifications were proposed where necessary. In addition to this, a new design rule was proposed based on the direct strength method to predict the web crippling capacities of tested beams. This paper presents the details of this experimental study and the results.