400 resultados para Photonic Device Applications
Resumo:
Most social network users hold more than one social network account and utilize them in different ways depending on the digital context. For example, friendly chat on Facebook, professional discussion on LinkedIn, and health information exchange on PatientsLikeMe. Thus many web users need to manage many disparate profiles across many distributed online sources. Maintaining these profiles is cumbersome, time consuming, inefficient, and leads to lost opportunity. In this paper we propose a framework for multiple profile management of online social networks and showcase a demonstrator utilising an open source platform. The result of the research enables a user to create and manage an integrated profile and share/synchronise their profiles with their social networks. A number of use cases were created to capture the functional requirements and describe the interactions between users and the online services. An innovative application of this project is in public health informatics. We utilize the prototype to examine how the framework can benefit patients and physicians. The framework can greatly enhance health information management for patients and more importantly offer a more comprehensive personal health overview of patients to physicians.
Resumo:
Carbon nanotubes (CNTs) have excellent electrical, mechanical and electromechanical properties. When CNTs are incorporated into polymers, electrically conductive composites with high electrical conductivity at very low CNT content (often below 1% wt CNT) result. Due to the change in electrical properties under mechanical load, carbon nanotube/polymer composites have attracted significant research interest especially due to their potential for application in in-situ monitoring of stress distribution and active control of strain sensing in composite structures or as strain sensors. To sucessfully develop novel devices for such applications, some of the major challenges that need to be overcome include; in-depth understanding of structure-electrical conductivity relationships, response of the composites under changing environmental conditions and piezoresistivity of different types of carbon nanotube/polymer sensing devices. In this thesis, direct current (DC) and alternating current (AC) conductivity of CNT-epoxy composites was investigated. Details of microstructure obtained by scanning electron microscopy were used to link observed electrical properties with structure using equivalent circuit modeling. The role of polymer coatings on macro and micro level electrical conductivity was investigated using atomic force microscopy. Thermal analysis and Raman spectroscopy were used to evaluate the heat flow and deformation of carbon nanotubes embedded in the epoxy, respectively, and related to temperature induced resistivity changes. A comparative assessment of piezoresistivity was conducted using randomly mixed carbon nanotube/epoxy composites, and new concept epoxy- and polyurethane-coated carbon nanotube films. The results indicate that equivalent circuit modelling is a reliable technique for estimating values of the resistance and capacitive components in linear, low aspect ratio-epoxy composites. Using this approach, the dominant role of tunneling resistance in determining the electrical conductivity was confirmed, a result further verified using conductive-atomic force microscopy analysis. Randomly mixed CNT-epoxy composites were found to be highly sensitive to mechanical strain and temperature variation compared to polymer-coated CNT films. In the vicinity of the glass transition temperature, the CNT-epoxy composites exhibited pronounced resistivity peaks. Thermal and Raman spectroscopy analyses indicated that this phenomenon can be attributed to physical aging of the epoxy matrix phase and structural rearrangement of the conductive network induced by matrix expansion. The resistivity of polymercoated CNT composites was mainly dominated by the intrinsic resistivity of CNTs and the CNT junctions, and their linear, weakly temperature sensitive response can be described by a modified Luttinger liquid model. Piezoresistivity of the polymer coated sensors was dominated by break up of the conducting carbon nanotube network and the consequent degradation of nanotube-nanotube contacts while that of the randomly mixed CNT-epoxy composites was determined by tunnelling resistance between neighbouring CNTs. This thesis has demonstrated that it is possible to use microstructure information to develop equivalent circuit models that are capable of representing the electrical conductivity of CNT/epoxy composites accurately. New designs of carbon nanotube based sensing devices, utilising carbon nanotube films as the key functional element, can be used to overcome the high temperature sensitivity of randomly mixed CNT/polymer composites without compromising on desired high strain sensitivity. This concept can be extended to develop large area intelligent CNT based coatings and targeted weak-point specific strain sensors for use in structural health monitoring.
Resumo:
A contentious issue in the field of destination marketing has been the recent tendency by some authors to refer to destination marketing organisations (DMOs) as destination management organisations. This nomenclature infers control over destination resources, a level of influence that is in reality held by few DMOs. This issue of a lack of control over the destination ‘amalgam’ is acknowledged by a number of the contributors, including the editors and the discussion on destination competitiveness by J.R. Brent Ritchie and Geoffrey Crouch, and is perhaps best summed up by Alan Fyall in the concluding chapter: “...unless all elements are owned by the same body, then the ability to control and influence the direction, quality and development of the destination pose very real challenges’ (p. 343). The title of the text acknowledges both marketing and management, in relation to theories and applications. While there are insightful propositions about ideals of destination management, readers will find there is a lack of coverage of destination management in practise by DMOs. This represents fertile ground for future research.
Resumo:
Objectives: To investigate the efficacy of progestin treatment to achieve pathological complete response (pCR) in patients with complex atypical endometrial hyperplasia (CAH) or early endometrial adenocarcinoma (EC). Methods: A systematic search identified 3245 potentially relevant citations. Studies containing less than ten eligible CAH or EC patients in either oral or intrauterine treatment arm were excluded. Only information from patients receiving six or more months of treatment and not receiving other treatments was included. Weighted proportions of patients achieving pCR were calculated using R software. Results: Twelve studies met the selection criteria. Eleven studies reported treatment of patients with oral (219 patients, 117 with CAH, 102 with grade 1 Stage I EC) and one reported treatment of patients with intrauterine progestin (11 patients with grade 1 Stage IEC). Overall, 74% (95% confidence interval [CI] 65-81%) of patients with CAH and 72% (95% CI 62-80%) of patients with grade 1 Stage I EC achieved a pCR to oral progestin. Disease progression while on oral treatment was reported for 6/219 (2.7%), and relapse after initial complete response for 32/159 (20.1%) patients. The weighted mean pCR rate of patients with grade 1 Stage I EC treated with intrauterine progestin from one prospective pilot study and an unpublished retrospective case series from the Queensland Centre of Gynaecologic Oncology (QCGC) was 68% (95% CI 45- 86%). Conclusions: There is a lack of high quality evidence for the efficacy of progestin in CAH or EC. The available evidence however suggests that treatment with oral or intrauterine progestin is similarly effective. The risk of progression during treatment is small but longer follow-up is required. Evidence from prospective controlled clinical trials is warranted to establish how the efficacy of progestin for the treatment of CAH and EC can be improved further.
Resumo:
The development and design of electric high power devices with electromagnetic computer-aided engineering (EM-CAE) software such as the Finite Element Method (FEM) and Boundary Element Method (BEM) has been widely adopted. This paper presents the analysis of a Fault Current Limiter (FCL), which acts as a high-voltage surge protector for power grids. A prototype FCL was built. The magnetic flux in the core and the resulting electromagnetic forces in the winding of the FCL were analyzed using both FEM and BEM. An experiment on the prototype was conducted in a laboratory. The data obtained from the experiment is compared to the numerical solutions to determine the suitability and accuracy of the two methods.
Resumo:
The majority of cancer nurses have to manage intravascular devices (IVDs) on a daily basis, thus placing nurses in the strongest position to generate and use best available evidence to inform this area of practice and to ensure that patients are receiving the best care available. Our literature clearly reflects that cancer nurses are concerned about complications associated with IVDs (eg, extravasation,1 IVD-related bloodstream infection [IVD-BSI],2,3 and thrombosis4). Although enormous attention is given to this area, a number of nursing practices are not sufficiently based on empirical evidence.5,6 Nurses need to set goals and priorities for future research and investments. Priority areas for future research are suggested here for your consideration.
Resumo:
Food has been a major agenda in political, socio-cultural, and environmental domains throughout history. The significance of food has been particularly highlighted in recent years with the growing public awareness of the unfolding impacts of climate change, challenging our understanding, practice, and expectations of our relationship with food. Parallel to this development has been the rise of web applications such as blogs, wikis, video and photo sharing sites, and social networking systems that are arguably more open, collaborative, and personalisable. These so-called ‘Web 2.0’ technologies have contributed to a more participatory Internet experience than what had previously been possible. An increasing number of these social applications are now available on mobile technologies where they take advantage of device-specific features such as sensors, location and context awareness, further expanding potential for the culture of participation and creativity. This international volume assembles a diverse collection of book chapters that contribute towards exploring and better understanding the opportunities and challenges provided by tools, interfaces, methods, and practices of social and mobile technology to enable engagement with people and creativity in the domain of food in contemporary society. It brings together an international group of academics and practitioners from a diverse range of disciplines such as computing and engineering, social sciences, digital media and human-computer interaction to critically examine a range of applications of social and mobile technology, such as social networking, mobile interaction, wikis, twitter, blogging, mapping, shared displays and urban screens, and their impact to foster a better understanding and practice of environmentally, socio-culturally, economically, and health-wise sustainable food culture.
Resumo:
Despite the rapidly urbanising population, public transport usage in metropolitan areas is not growing at a level that corresponds to the trend. Many people are reluctant to travel using public transport, as it is commonly associated with unpleasant experiences such as limited services, long wait time, and crowded spaces. This study aims to explore the use of mobile spatial interactions and services, and investigate their potential to increase the enjoyment of our everyday commuting experience. The main goal is to develop and evaluate mobile-mediated design interventions to foster interactions for and among passengers, as well as between passengers and public transport infrastructures, with the aim to positively influence the experience of commuting. Ultimately, this study hopes to generate findings and knowledge towards creating a more enjoyable public transport experience, as well as to explore innovative uses of mobile technologies and context-aware services for the urban lifestyle.
Resumo:
This paper presents an efficient face detection method suitable for real-time surveillance applications. Improved efficiency is achieved by constraining the search window of an AdaBoost face detector to pre-selected regions. Firstly, the proposed method takes a sparse grid of sample pixels from the image to reduce whole image scan time. A fusion of foreground segmentation and skin colour segmentation is then used to select candidate face regions. Finally, a classifier-based face detector is applied only to selected regions to verify the presence of a face (the Viola-Jones detector is used in this paper). The proposed system is evaluated using 640 x 480 pixels test images and compared with other relevant methods. Experimental results show that the proposed method reduces the detection time to 42 ms, where the Viola-Jones detector alone requires 565 ms (on a desktop processor). This improvement makes the face detector suitable for real-time applications. Furthermore, the proposed method requires 50% of the computation time of the best competing method, while reducing the false positive rate by 3.2% and maintaining the same hit rate.
Resumo:
Advances in algorithms for approximate sampling from a multivariable target function have led to solutions to challenging statistical inference problems that would otherwise not be considered by the applied scientist. Such sampling algorithms are particularly relevant to Bayesian statistics, since the target function is the posterior distribution of the unobservables given the observables. In this thesis we develop, adapt and apply Bayesian algorithms, whilst addressing substantive applied problems in biology and medicine as well as other applications. For an increasing number of high-impact research problems, the primary models of interest are often sufficiently complex that the likelihood function is computationally intractable. Rather than discard these models in favour of inferior alternatives, a class of Bayesian "likelihoodfree" techniques (often termed approximate Bayesian computation (ABC)) has emerged in the last few years, which avoids direct likelihood computation through repeated sampling of data from the model and comparing observed and simulated summary statistics. In Part I of this thesis we utilise sequential Monte Carlo (SMC) methodology to develop new algorithms for ABC that are more efficient in terms of the number of model simulations required and are almost black-box since very little algorithmic tuning is required. In addition, we address the issue of deriving appropriate summary statistics to use within ABC via a goodness-of-fit statistic and indirect inference. Another important problem in statistics is the design of experiments. That is, how one should select the values of the controllable variables in order to achieve some design goal. The presences of parameter and/or model uncertainty are computational obstacles when designing experiments but can lead to inefficient designs if not accounted for correctly. The Bayesian framework accommodates such uncertainties in a coherent way. If the amount of uncertainty is substantial, it can be of interest to perform adaptive designs in order to accrue information to make better decisions about future design points. This is of particular interest if the data can be collected sequentially. In a sense, the current posterior distribution becomes the new prior distribution for the next design decision. Part II of this thesis creates new algorithms for Bayesian sequential design to accommodate parameter and model uncertainty using SMC. The algorithms are substantially faster than previous approaches allowing the simulation properties of various design utilities to be investigated in a more timely manner. Furthermore the approach offers convenient estimation of Bayesian utilities and other quantities that are particularly relevant in the presence of model uncertainty. Finally, Part III of this thesis tackles a substantive medical problem. A neurological disorder known as motor neuron disease (MND) progressively causes motor neurons to no longer have the ability to innervate the muscle fibres, causing the muscles to eventually waste away. When this occurs the motor unit effectively ‘dies’. There is no cure for MND, and fatality often results from a lack of muscle strength to breathe. The prognosis for many forms of MND (particularly amyotrophic lateral sclerosis (ALS)) is particularly poor, with patients usually only surviving a small number of years after the initial onset of disease. Measuring the progress of diseases of the motor units, such as ALS, is a challenge for clinical neurologists. Motor unit number estimation (MUNE) is an attempt to directly assess underlying motor unit loss rather than indirect techniques such as muscle strength assessment, which generally is unable to detect progressions due to the body’s natural attempts at compensation. Part III of this thesis builds upon a previous Bayesian technique, which develops a sophisticated statistical model that takes into account physiological information about motor unit activation and various sources of uncertainties. More specifically, we develop a more reliable MUNE method by applying marginalisation over latent variables in order to improve the performance of a previously developed reversible jump Markov chain Monte Carlo sampler. We make other subtle changes to the model and algorithm to improve the robustness of the approach.
Resumo:
In this paper we demonstrate how to monitor a smartphone running Symbian operating system and Windows Mobile in order to extract features for anomaly detection. These features are sent to a remote server because running a complex intrusion detection system on this kind of mobile device still is not feasible due to capability and hardware limitations. We give examples on how to compute relevant features and introduce the top ten applications used by mobile phone users based on a study in 2005. The usage of these applications is recorded by a monitoring client and visualized. Additionally, monitoring results of public and self-written malwares are shown. For improving monitoring client performance, Principal Component Analysis was applied which lead to a decrease of about 80 of the amount of monitored features.
Resumo:
ZnO is a wide band-gap semiconductor that has several desirable properties for optoelectronic devices. With its large exciton binding energy of ~60 meV, ZnO is a promising candidate for high stability, room-temperature luminescent and lasing devices [1]. Ultraviolet light-emitting diodes (LEDs) based on ZnO homojunctions had been reported [2,3], while preparing stable p-type ZnO is still a challenge. An alternative way is to use other p-type semiconductors, ether inorganic or organic, to form heterojunctions with the naturally n-type ZnO. The crystal structure of wurtzite ZnO can be described as Zn and O atomic layers alternately stacked along the [0001] direction. Because of the fastest growth rate over the polar (0001) facet, ZnO crystals tend to grow into one-dimensional structures, such as nanowires and nanobelts. Since the first report of ZnO nanobelts in 2001 [4], ZnO nanostructures have been particularly studied for their potential applications in nano-sized devices. Various growth methods have been developed for growing ZnO nanostructures, such as chemical vapor deposition (CVD), Metal-organic CVD (MOCVD), aqueous growth and electrodeposition [5]. Based on the successful synthesis of ZnO nanowires/nanorods, various types of hybrid light-emitting diodes (LEDs) were made. Inorganic p-type semiconductors, such as GaN, Si and SiC, have been used as substrates to grown ZnO nanorods/nanowires for making LEDs. GaN is an ideal material that matches ZnO not only in the crystal structure but also in the energy band levels. However, to prepare Mg-doped p-GaN films via epitaxial growth is still costly. In comparison, the organic semiconductors are inexpensive and have many options to select, for a large variety of p-type polymer or small-molecule semiconductors are now commercially available. The organic semiconductor has the limitation of durability and environmental stability. Many polymer semiconductors are susceptible to damage by humidity or mere exposure to oxygen in the air. Also the carrier mobilities of polymer semiconductors are generally lower than the inorganic semiconductors. However, the combination of polymer semiconductors and ZnO nanostructures opens the way for making flexible LEDs. There are few reports on the hybrid LEDs based on ZnO/polymer heterojunctions, some of them showed the characteristic UV electroluminescence (EL) of ZnO. This chapter reports recent progress of the hybrid LEDs based on ZnO nanowires and other inorganic/organic semiconductors. We provide an overview of the ZnO-nanowire-based hybrid LEDs from the perspectives of the device configuration, growth methods of ZnO nanowires and the selection of p-type semiconductors. Also the device performances and remaining issues are presented.
Resumo:
CTAC2012 was the 16th biennial Computational Techniques and Applications Conference, and took place at Queensland University of Technology from 23 - 26 September, 2012. The ANZIAM Special Interest Group in Computational Techniques and Applications is responsible for the CTAC meetings, the first of which was held in 1981.
Resumo:
Our daily lives become more and more dependent upon smartphones due to their increased capabilities. Smartphones are used in various ways from payment systems to assisting the lives of elderly or disabled people. Security threats for these devices become increasingly dangerous since there is still a lack of proper security tools for protection. Android emerges as an open smartphone platform which allows modification even on operating system level. Therefore, third-party developers have the opportunity to develop kernel-based low-level security tools which is not normal for smartphone platforms. Android quickly gained its popularity among smartphone developers and even beyond since it bases on Java on top of "open" Linux in comparison to former proprietary platforms which have very restrictive SDKs and corresponding APIs. Symbian OS for example, holding the greatest market share among all smartphone OSs, was closing critical APIs to common developers and introduced application certification. This was done since this OS was the main target for smartphone malwares in the past. In fact, more than 290 malwares designed for Symbian OS appeared from July 2004 to July 2008. Android, in turn, promises to be completely open source. Together with the Linux-based smartphone OS OpenMoko, open smartphone platforms may attract malware writers for creating malicious applications endangering the critical smartphone applications and owners� privacy. In this work, we present our current results in analyzing the security of Android smartphones with a focus on its Linux side. Our results are not limited to Android, they are also applicable to Linux-based smartphones such as OpenMoko Neo FreeRunner. Our contribution in this work is three-fold. First, we analyze android framework and the Linux-kernel to check security functionalities. We survey wellaccepted security mechanisms and tools which can increase device security. We provide descriptions on how to adopt these security tools on Android kernel, and provide their overhead analysis in terms of resource usage. As open smartphones are released and may increase their market share similar to Symbian, they may attract attention of malware writers. Therefore, our second contribution focuses on malware detection techniques at the kernel level. We test applicability of existing signature and intrusion detection methods in Android environment. We focus on monitoring events on the kernel; that is, identifying critical kernel, log file, file system and network activity events, and devising efficient mechanisms to monitor them in a resource limited environment. Our third contribution involves initial results of our malware detection mechanism basing on static function call analysis. We identified approximately 105 Executable and Linking Format (ELF) executables installed to the Linux side of Android. We perform a statistical analysis on the function calls used by these applications. The results of the analysis can be compared to newly installed applications for detecting significant differences. Additionally, certain function calls indicate malicious activity. Therefore, we present a simple decision tree for deciding the suspiciousness of the corresponding application. Our results present a first step towards detecting malicious applications on Android-based devices.