279 resultados para Packet Filtering
Resumo:
This paper presents a method for the estimation of thrust model parameters of uninhabited airborne systems using specific flight tests. Particular tests are proposed to simplify the estimation. The proposed estimation method is based on three steps. The first step uses a regression model in which the thrust is assumed constant. This allows us to obtain biased initial estimates of the aerodynamic coeficients of the surge model. In the second step, a robust nonlinear state estimator is implemented using the initial parameter estimates, and the model is augmented by considering the thrust as random walk. In the third step, the estimate of the thrust obtained by the observer is used to fit a polynomial model in terms of the propeller advanced ratio. We consider a numerical example based on Monte-Carlo simulations to quantify the sampling properties of the proposed estimator given realistic flight conditions.
Resumo:
A robust visual tracking system requires an object appearance model that is able to handle occlusion, pose, and illumination variations in the video stream. This can be difficult to accomplish when the model is trained using only a single image. In this paper, we first propose a tracking approach based on affine subspaces (constructed from several images) which are able to accommodate the abovementioned variations. We use affine subspaces not only to represent the object, but also the candidate areas that the object may occupy. We furthermore propose a novel approach to measure affine subspace-to-subspace distance via the use of non-Euclidean geometry of Grassmann manifolds. The tracking problem is then considered as an inference task in a Markov Chain Monte Carlo framework via particle filtering. Quantitative evaluation on challenging video sequences indicates that the proposed approach obtains considerably better performance than several recent state-of-the-art methods such as Tracking-Learning-Detection and MILtrack.
Resumo:
This paper presents a practical recursive fault detection and diagnosis (FDD) scheme for online identification of actuator faults for unmanned aerial systems (UASs) based on the unscented Kalman filtering (UKF) method. The proposed FDD algorithm aims to monitor health status of actuators and provide indication of actuator faults with reliability, offering necessary information for the design of fault-tolerant flight control systems to compensate for side-effects and improve fail-safe capability when actuator faults occur. The fault detection is conducted by designing separate UKFs to detect aileron and elevator faults using a nonlinear six degree-of-freedom (DOF) UAS model. The fault diagnosis is achieved by isolating true faults by using the Bayesian Classifier (BC) method together with a decision criterion to avoid false alarms. High-fidelity simulations with and without measurement noise are conducted with practical constraints considered for typical actuator fault scenarios, and the proposed FDD exhibits consistent effectiveness in identifying occurrence of actuator faults, verifying its suitability for integration into the design of fault-tolerant flight control systems for emergency landing of UASs.
Resumo:
Multi-touch interfaces across a wide range of hardware platforms are becoming pervasive. This is due to the adoption of smart phones and tablets in both the consumer and corporate market place. This paper proposes a human-machine interface to interact with unmanned aerial systems based on the philosophy of multi-touch hardware-independent high-level interaction with multiple systems simultaneously. Our approach incorporates emerging development methods for multi-touch interfaces on mobile platforms. A framework is defined for supporting multiple protocols. An open source solution is presented that demonstrates: architecture supporting different communications hardware; an extensible approach for supporting multiple protocols; and the ability to monitor and interact with multiple UAVs from multiple clients simultaneously. Validation tests were conducted to assess the performance, scalability and impact on packet latency under different client configurations.
Resumo:
Digital forensics concerns the analysis of electronic artifacts to reconstruct events such as cyber crimes. This research produced a framework to support forensic analyses by identifying associations in digital evidence using metadata. It showed that metadata based associations can help uncover the inherent relationships between heterogeneous digital artifacts thereby aiding reconstruction of past events by identifying artifact dependencies and time sequencing. It also showed that metadata association based analysis is amenable to automation by virtue of the ubiquitous nature of metadata across forensic disk images, files, system and application logs and network packet captures. The results prove that metadata based associations can be used to extract meaningful relationships between digital artifacts, thus potentially benefiting real-life forensics investigations.
Resumo:
The development of global navigation satellite systems (GNSS) provides a solution of many applied problems with increasingly higher quality and accuracy nowadays. Researches that are carried out by the Bavarian Academy of Sciences and Humanities in Munich (BAW) in the field of airborne gravimetry are based on sophisticated data processing from high frequency GNSS receiver for kinematic aircraft positioning. Applied algorithms for inertial acceleration determination are based on the high sampling rate (50Hz) and on reducing of such factors as ionosphere scintillation and multipath at aircraft /antenna near field effects. The quality of the GNSS derived kinematic height are studied also by intercomparison with lift height variations collected by a precise high sampling rate vertical scale [1]. This work is aimed at the ways of more accurate determination of mini-aircraft altitude by means of high frequency GNSS receivers, in particular by considering their dynamic behaviour.
Resumo:
Современный этап развития комплексов автоматического управления и навигации малогабаритными БЛА многократного применения предъявляет высокие требования к автономности, точности и миниатюрности данных систем. Противоречивость требований диктует использование функционального и алгоритмического объединения нескольких разнотипных источников навигационной информации в едином вычислительном процессе на основе методов оптимальной фильтрации. Получили широкое развитие бесплатформенные инерциальные навигационные системы (БИНС) на основе комплексирования данных микромеханических датчиков инерциальной информации и датчиков параметров движения в воздушном потоке с данными спутниковых навигационных систем (СНС). Однако в современных условиях такой подход не в полной мере реализует требования к помехозащищённости, автономности и точности получаемой навигационной информации. Одновременно с этим достигли значительного прогресса навигационные системы, использующие принципы корреляционно экстремальной навигации по оптическим ориентирам и цифровым картам местности. Предлагается схема построения автономной автоматической навигационной системы (АНС) для БЛА многоразового применения на основе объединения алгоритмов БИНС, спутниковой навигационной системы и оптической навигационной системы. The modern stage of automatic control and guidance systems development for small unmanned aerial vehicles (UAV) is determined by advanced requirements for autonomy, accuracy and size of the systems. The contradictory of the requirements dictates novel functional and algorithmic tight coupling of several different onboard sensors into one computational process, which is based on methods of optimal filtering. Nowadays, data fusion of micro-electro mechanical sensors of inertial measurement units, barometric pressure sensors, and signals of global navigation satellite systems (GNSS) receivers is widely used in numerous strap down inertial navigation systems (INS). However, the systems do not fully comply with such requirements as jamming immunity, fault tolerance, autonomy, and accuracy of navigation. At the same time, the significant progress has been recently demonstrated by the navigation systems, which use the correlation extremal principle applied for optical data flow and digital maps. This article proposes a new architecture of automatic navigation management system (ANMS) for small UAV, which combines algorithms of strap down INS, satellite navigation and optical navigation system.
Resumo:
We first classify the state-of-the-art stream authentication problem in the multicast environment and group them into Signing and MAC approaches. A new approach for authenticating digital streams using Threshold Techniques is introduced. The new approach main advantages are in tolerating packet loss, up to a threshold number, and having a minimum space overhead. It is most suitable for multicast applications running over lossy, unreliable communication channels while, in same time, are pertain the security requirements. We use linear equations based on Lagrange polynomial interpolation and Combinatorial Design methods.
Resumo:
We study the multicast stream authentication problem when an opponent can drop, reorder and inject data packets into the communication channel. In this context, bandwidth limitation and fast authentication are the core concerns. Therefore any authentication scheme is to reduce as much as possible the packet overhead and the time spent at the receiver to check the authenticity of collected elements. Recently, Tartary and Wang developed a provably secure protocol with small packet overhead and a reduced number of signature verifications to be performed at the receiver. In this paper, we propose an hybrid scheme based on Tartary and Wang’s approach and Merkle hash trees. Our construction will exhibit a smaller overhead and a much faster processing at the receiver making it even more suitable for multicast than the earlier approach. As Tartary and Wang’s protocol, our construction is provably secure and allows the total recovery of the data stream despite erasures and injections occurred during transmission.
Resumo:
This paper investigates compressed sensing using hidden Markov models (HMMs) and hence provides an extension of recent single frame, bounded error sparse decoding problems into a class of sparse estimation problems containing both temporal evolution and stochastic aspects. This paper presents two optimal estimators for compressed HMMs. The impact of measurement compression on HMM filtering performance is experimentally examined in the context of an important image based aircraft target tracking application. Surprisingly, tracking of dim small-sized targets (as small as 5-10 pixels, with local detectability/SNR as low as − 1.05 dB) was only mildly impacted by compressed sensing down to 15% of original image size.
Resumo:
The means of reducing nanoparticle contamination in the synthesis of carbon nanostructures in reactive Ar + H2 + CH4 plasmas are studied. It is shown that by combining the electrostatic filtering and thermophoretic manipulation of nanoparticles, one can significantly improve the quality of carbon nanopatterns. By increasing the substrate heating power, one can increase the size of deposited nanoparticles and eventually achieve nanoparticle-free nanoassemblies. This approach is generic and is applicable to other reactive plasma-aided nanofabrication processes.
Resumo:
Handover performance is critical to support real-time traffic applications in wireless network communications. The longer the handover delay is, the longer an Mobile Node (MN) is prevented from sending and receiving any data packet. In real-time network communication applications, such as VoIP and video-conference, a long handover delay is often unacceptable. In order to achieve better handover performance, Fast Proxy Mobile IPv6 (FPMIPv6) has been standardised as an improvement to the original Proxy Mobile IPv6 (PMIPv6) in the Internet Engineering Task Force (IETF). The FPMIPv6 adopts a link layer triggering mechanism to perform two modes of operation: predictive and reactive modes. Using the link layer triggering, the handover performance of the FPMIPv6 can be improved in the predictive mode. However, an unsuccessful predictive handover operation will lead to activation of a reactive handover. In the reactive mode, MNs still experience long handover delays and a large amount of packet loss, which significantly degrade the handover performance of the FPMIPv6. Addressing this problem, this thesis presents an Enhanced Triggering Mechanism (ETM) in the FPMIPv6 to form an enhanced FPMIPv6 (eFPMIPv6). The ETM reduces the most time consuming processes in the reactive handover: the failed Handover Initiate (HO-Initiate) delay and bidirectional tunnel establishment delay. Consequently, the overall handover performance of the FPMIPv6 is enhanced in the eFPMIPv6. To show the advantages of the proposed eFPMIPv6, a theoretical analysis is carried out to mathematically model the performance of PMIPv6, FPMIPv6 and eFPMIPv6. Extensive case studies are conducted to validate the effectiveness of the presented eFPMIPv6 mechanism. They are carried out under various scenarios with changes in network link delay, traffic load, number of hops and MN moving velocity. The case studies show that the proposed mechanism ETM reduces the reactive handover delay, and the presented eFPMIPv6 outperforms the PMIPv6 and FPMIPv6 in terms of the overall handover performance.
Resumo:
Background Small RNA sequencing is commonly used to identify novel miRNAs and to determine their expression levels in plants. There are several miRNA identification tools for animals such as miRDeep, miRDeep2 and miRDeep*. miRDeep-P was developed to identify plant miRNA using miRDeep’s probabilistic model of miRNA biogenesis, but it depends on several third party tools and lacks a user-friendly interface. The objective of our miRPlant program is to predict novel plant miRNA, while providing a user-friendly interface with improved accuracy of prediction. Result We have developed a user-friendly plant miRNA prediction tool called miRPlant. We show using 16 plant miRNA datasets from four different plant species that miRPlant has at least a 10% improvement in accuracy compared to miRDeep-P, which is the most popular plant miRNA prediction tool. Furthermore, miRPlant uses a Graphical User Interface for data input and output, and identified miRNA are shown with all RNAseq reads in a hairpin diagram. Conclusions We have developed miRPlant which extends miRDeep* to various plant species by adopting suitable strategies to identify hairpin excision regions and hairpin structure filtering for plants. miRPlant does not require any third party tools such as mapping or RNA secondary structure prediction tools. miRPlant is also the first plant miRNA prediction tool that dynamically plots miRNA hairpin structure with small reads for identified novel miRNAs. This feature will enable biologists to visualize novel pre-miRNA structure and the location of small RNA reads relative to the hairpin. Moreover, miRPlant can be easily used by biologists with limited bioinformatics skills.
Resumo:
Twitter is a very popular social network website that allows users to publish short posts called tweets. Users in Twitter can follow other users, called followees. A user can see the posts of his followees on his Twitter profile home page. An information overload problem arose, with the increase of the number of followees, related to the number of tweets available in the user page. Twitter, similar to other social network websites, attempts to elevate the tweets the user is expected to be interested in to increase overall user engagement. However, Twitter still uses the chronological order to rank the tweets. The tweets ranking problem was addressed in many current researches. A sub-problem of this problem is to rank the tweets for a single followee. In this paper we represent the tweets using several features and then we propose to use a weighted version of the famous voting system Borda-Count (BC) to combine several ranked lists into one. A gradient descent method and collaborative filtering method are employed to learn the optimal weights. We also employ the Baldwin voting system for blending features (or predictors). Finally we use the greedy feature selection algorithm to select the best combination of features to ensure the best results.
Resumo:
This book reports on an empirically-based study of the manner in which the Magistrates' Courts in Victoria, construct occupational health and safety (OHS) issues when hearing prosecutions for offences under the Victorian OHS legislation. Prosecution has always been a controversial element in the enforcement armoury of OHS regulators, but at the same time it has long been argued that the low level of fines imposed by courts has had an important chilling effect on the OHS inspectorate's enforcement approaches, and on the impact of OHS legislation. Using a range of empirical research methods, including three samples of OHS prosecutions carried out in the Victorian Magistrates' Courts, Professor Johnstone shows how courts, inspectors, prosecutors and defence counsel are involved in filtering or reshaping OHS issues during the prosecution process, both pre-trial and in court. He argues that OHS offences are constructed by focusing on "events", in most cases incidents resulting in injury or death. This "event-focus" ensures that the attention of the parties is drawn to the details of the incident, and away from the broader context of the event. During the court-based sentencing process defence counsel is able to adopt a range of techniques which isolate the incident from its micro and macro contexts, thereby individualising and decontextualising the incident.