346 resultados para Music genre classification
Resumo:
The purpose of this explorative study is to contribute to the understanding of current music industry dynamics. The situation is undeniably quite dramatic: Since the turn of the millennium, the global music industry has declined by $ US 6.2 billion in value—a fall of 16.3% in constant dollar terms. IFPI, the trade organization representing the international recording industry, identifies a number of exogenous factors as the main drivers of the downturn. This article suggests that other factors, in addition to those identified by IFPI, may have contributed to the current difficulties. A model is presented which indicates that business strategies which were designed to cope with the challenging business environment have reduced product diversity, damaged profitability, and contributed to the problem they were intended to solve.
Resumo:
1974 was the year when the Swedish pop group ABBA won the Eurovision Song Contest in Brighton and when Blue Swede reached number one on the Billboard Hot 100 in the US. Although Swedish pop music gained some international success even prior to 1974, this year is often considered as the beginning of an era in which Swedish pop music had great success around the world. With brands such as ABBA, Europe, Roxette, The Cardigans, Ace of Base, In Flames, Robyn, Avicii, Swedish House Mafia and music producers Stig Andersson, Ola Håkansson, Dag Volle, Max Martin, Andreas Carlsson, Jorgen Elofsson and several others have the myth of the Swedish music miracle kept alive for nearly more than four decades. Swedish music looks to continue reap success around the world, but since the millennium, Sweden's relationship with music has been more focused on relatively controversial Internet-based services for music distribution developed by Swedish entrepreneurs and engineers rather than on successful musicians and composers. This chapter focusses on the music industry in Sweden. The chapter will discuss the development of the Internet services mentioned above and their impact on the production, distribution and consumption of recorded music. Ample space will be given in particular to Spotify, the music service that quickly has fundamentally changed the music industry in Sweden. The chapter will also present how the music industry's three sectors - recorded music, music licensing and live music - interact and evolve in Sweden.
Resumo:
The participatory turn, fuelled by discourses and rhetoric regarding social media, and in the aftermath of the dot.com crash of the early 2000s, enrols to some extent an idea of being able to deploy networks to achieve institutional aims. The arts and cultural sector in the UK, in the face of funding cuts, has been keen to engage with such ideas in order to demonstrate value for money; by improving the efficiency of their operations, improving their respective audience experience and ultimately increasing audience size and engagement. Drawing on a case study compiled via a collaborative research project with a UK-based symphony orchestra (UKSO) we interrogate the potentials of social media engagement for audience development work through participatory media and networked publics. We argue that the literature related to mobile phones and applications (‘apps’) has focused primarily on marketing for engagement where institutional contexts are concerned. In contrast, our analysis elucidates the broader potentials and limitations of social-media-enabled apps for audience development and engagement beyond a marketing paradigm. In the case of UKSO, it appears that the technologically deterministic discourses often associated with institutional enrolment of participatory media and networked publics may not necessarily apply due to classical music culture. More generally, this work raises the contradictory nature of networked publics and argues for increased critical engagement with the concept.
Resumo:
This article examines the design of ePortfolios for music postgraduate students utilizing a practice-led design iterative research process. It is suggested that the availability of Web 2.0 technologies such as blogs and social network software potentially provide creative artist with an opportunity to engage in a dialogue about art with artefacts of the artist products and processes present in that discussion. The design process applied Software Development as Research (SoDaR) methodology to simultaneously develop design and pedagogy. The approach to designing ePortfolio systems applied four theoretical protocols to examine the use of digitized artefacts to enable a dynamic and inclusive dialogue around representations of the students work. A negative case analysis identified a disjuncture between university access and control policy, and the relative openness of Web2.0 systems outside the institution that led to the design of an integrated model of ePortfolio.
Resumo:
A cell classification algorithm that uses first, second and third order statistics of pixel intensity distributions over pre-defined regions is implemented and evaluated. A cell image is segmented into 6 regions extending from a boundary layer to an inner circle. First, second and third order statistical features are extracted from histograms of pixel intensities in these regions. Third order statistical features used are one-dimensional bispectral invariants. 108 features were considered as candidates for Adaboost based fusion. The best 10 stage fused classifier was selected for each class and a decision tree constructed for the 6-class problem. The classifier is robust, accurate and fast by design.
Resumo:
Real-time image analysis and classification onboard robotic marine vehicles, such as AUVs, is a key step in the realisation of adaptive mission planning for large-scale habitat mapping in previously unexplored environments. This paper describes a novel technique to train, process, and classify images collected onboard an AUV used in relatively shallow waters with poor visibility and non-uniform lighting. The approach utilises Förstner feature detectors and Laws texture energy masks for image characterisation, and a bag of words approach for feature recognition. To improve classification performance we propose a usefulness gain to learn the importance of each histogram component for each class. Experimental results illustrate the performance of the system in characterisation of a variety of marine habitats and its ability to operate onboard an AUV's main processor suitable for real-time mission planning.
Resumo:
This study is an examination of three small-scale artist run music businesses based in Brisbane. The researcher embedded himself within these three environments over the space of three years, using participant observation and content analysis to establish the key motivations, theories, and ideas which drove these businesses. As a researcher participant the author also drew on his own experiences to interrogate those investigated by other researchers in the field, with the underlying key theories influenced by Pierre Bourdieu's writings on Small-Scale production. This study provides a fascinating insight into Brisbane music culture, in particular the independent music scenes.
Resumo:
THE senior Anglican clergyman at the centre of an international child sex scandal was also a governor of a prestigious English music college that is under investigation for the alleged abuse of scores of its students across decades. Robert Waddington, who is alleged to have sexually assaulted students and choirboys in Britain and Australia, was a governor of the scandal-hit Chetham's School of Music for nine years. Waddington recruited students from the school for his choir at Manchester Cathedral, and allegedly abused at least three of the boys until he retired in 1993. The police investigation into the school, which began after the conviction in February of Michael Brewer, a former Chetham's music director, for the sexual abuse of female students, has not previously looked at Waddington. A victim has told The Weekend Australian that he was aware Waddington abused several boys from Chetham's who, like him, had been in the choir. The Cambridge University-educated business analyst, who has offered to give evidence under oath to police and the Church of England's inquiry into Waddington, said the clergyman had kept a collection of pictures in his house of boys he had abused.
Resumo:
Objective To evaluate the effects of Optical Character Recognition (OCR) on the automatic cancer classification of pathology reports. Method Scanned images of pathology reports were converted to electronic free-text using a commercial OCR system. A state-of-the-art cancer classification system, the Medical Text Extraction (MEDTEX) system, was used to automatically classify the OCR reports. Classifications produced by MEDTEX on the OCR versions of the reports were compared with the classification from a human amended version of the OCR reports. Results The employed OCR system was found to recognise scanned pathology reports with up to 99.12% character accuracy and up to 98.95% word accuracy. Errors in the OCR processing were found to minimally impact on the automatic classification of scanned pathology reports into notifiable groups. However, the impact of OCR errors is not negligible when considering the extraction of cancer notification items, such as primary site, histological type, etc. Conclusions The automatic cancer classification system used in this work, MEDTEX, has proven to be robust to errors produced by the acquisition of freetext pathology reports from scanned images through OCR software. However, issues emerge when considering the extraction of cancer notification items.
Resumo:
Objective: To develop a system for the automatic classification of pathology reports for Cancer Registry notifications. Method: A two pass approach is proposed to classify whether pathology reports are cancer notifiable or not. The first pass queries pathology HL7 messages for known report types that are received by the Queensland Cancer Registry (QCR), while the second pass aims to analyse the free text reports and identify those that are cancer notifiable. Cancer Registry business rules, natural language processing and symbolic reasoning using the SNOMED CT ontology were adopted in the system. Results: The system was developed on a corpus of 500 histology and cytology reports (with 47% notifiable reports) and evaluated on an independent set of 479 reports (with 52% notifiable reports). Results show that the system can reliably classify cancer notifiable reports with a sensitivity, specificity, and positive predicted value (PPV) of 0.99, 0.95, and 0.95, respectively for the development set, and 0.98, 0.96, and 0.96 for the evaluation set. High sensitivity can be achieved at a slight expense in specificity and PPV. Conclusion: The system demonstrates how medical free-text processing enables the classification of cancer notifiable pathology reports with high reliability for potential use by Cancer Registries and pathology laboratories.
Resumo:
The aim of this research is to report initial experimental results and evaluation of a clinician-driven automated method that can address the issue of misdiagnosis from unstructured radiology reports. Timely diagnosis and reporting of patient symptoms in hospital emergency departments (ED) is a critical component of health services delivery. However, due to disperse information resources and vast amounts of manual processing of unstructured information, a point-of-care accurate diagnosis is often difficult. A rule-based method that considers the occurrence of clinician specified keywords related to radiological findings was developed to identify limb abnormalities, such as fractures. A dataset containing 99 narrative reports of radiological findings was sourced from a tertiary hospital. The rule-based method achieved an F-measure of 0.80 and an accuracy of 0.80. While our method achieves promising performance, a number of avenues for improvement were identified using advanced natural language processing (NLP) techniques.
Resumo:
Objective To develop and evaluate machine learning techniques that identify limb fractures and other abnormalities (e.g. dislocations) from radiology reports. Materials and Methods 99 free-text reports of limb radiology examinations were acquired from an Australian public hospital. Two clinicians were employed to identify fractures and abnormalities from the reports; a third senior clinician resolved disagreements. These assessors found that, of the 99 reports, 48 referred to fractures or abnormalities of limb structures. Automated methods were then used to extract features from these reports that could be useful for their automatic classification. The Naive Bayes classification algorithm and two implementations of the support vector machine algorithm were formally evaluated using cross-fold validation over the 99 reports. Result Results show that the Naive Bayes classifier accurately identifies fractures and other abnormalities from the radiology reports. These results were achieved when extracting stemmed token bigram and negation features, as well as using these features in combination with SNOMED CT concepts related to abnormalities and disorders. The latter feature has not been used in previous works that attempted classifying free-text radiology reports. Discussion Automated classification methods have proven effective at identifying fractures and other abnormalities from radiology reports (F-Measure up to 92.31%). Key to the success of these techniques are features such as stemmed token bigrams, negations, and SNOMED CT concepts associated with morphologic abnormalities and disorders. Conclusion This investigation shows early promising results and future work will further validate and strengthen the proposed approaches.
Resumo:
The work of Gilles Deleuze has influenced an increasing number of music scholars and practicing musicians, particularly those interested in experimental, electronic and popular music. This is despite the notoriously complex nature of his writings, and the specialised theoretical vocabulary that he employs. This thesis both demystifies some of the key terms and concepts of this vocabulary, before demonstrating how Deleuze’s ideas may be put to work in new and fruitful ways; this is achieved with specific reference to the relationships that music has with thought, time and machines. In Chapter 1, Deleuze’s understanding of the power of thought is examined, in particular his approach to communication, transcendence and immanence, and the “powers of thought.” Each of these concepts helps us to understand Deleuze’s work within broad problem of how to think about music immanently: that is, how to maintain that thought and music are both immanent aspects of life and experience. Chapter 2 examines time within a Deleuzian framework, linking his work on cinema with the concept of the “refrain”; both of these areas prove crucial to his understanding of music, as seen in Deleuze’s approach to the work of Varese, Messiaen, and Boulez. In addition, Deleuze’s understanding of time proves fruitful in examining various aspects of music production, as seen in contemporary electronic dance music. Finally, Chapter 3 looks at the concept of the machine, as developed by Deleuze and Guattari, with reference to the sorts of “machinic” connections that a Deleuzian approach encourages us to seek out in music. Once again, examples from contemporary electronic music are presented, in relation to the notions of becoming and subjectivity. Throughout these chapters, Deleuze’s broad understanding of philosophy as the “creation of concepts” is deployed. This means introducing new ideas and specific types of music that encourage creative and novel engagements with the study of music.
Resumo:
Spatially-explicit modelling of grassland classes is important to site-specific planning for improving grassland and environmental management over large areas. In this study, a climate-based grassland classification model, the Comprehensive and Sequential Classification System (CSCS) was integrated with spatially interpolated climate data to classify grassland in Gansu province, China. The study area is characterized by complex topographic features imposed by plateaus, high mountains, basins and deserts. To improve the quality of the interpolated climate data and the quality of the spatial classification over this complex topography, three linear regression methods, namely an analytic method based on multiple regression and residues (AMMRR), a modification of the AMMRR method through adding the effect of slope and aspect to the interpolation analysis (M-AMMRR) and a method which replaces the IDW approach for residue interpolation in M-AMMRR with an ordinary kriging approach (I-AMMRR), for interpolating climate variables were evaluated. The interpolation outcomes from the best interpolation method were then used in the CSCS model to classify the grassland in the study area. Climate variables interpolated included the annual cumulative temperature and annual total precipitation. The results indicated that the AMMRR and M-AMMRR methods generated acceptable climate surfaces but the best model fit and cross validation result were achieved by the I-AMMRR method. Twenty-six grassland classes were classified for the study area. The four grassland vegetation classes that covered more than half of the total study area were "cool temperate-arid temperate zonal semi-desert", "cool temperate-humid forest steppe and deciduous broad-leaved forest", "temperate-extra-arid temperate zonal desert", and "frigid per-humid rain tundra and alpine meadow". The vegetation classification map generated in this study provides spatial information on the locations and extents of the different grassland classes. This information can be used to facilitate government agencies' decision-making in land-use planning and environmental management, and for vegetation and biodiversity conservation. The information can also be used to assist land managers in the estimation of safe carrying capacities which will help to prevent overgrazing and land degradation.