396 resultados para Mechanical tests


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The IEC 61850 family of standards for substation communication systems were released in the early 2000s, and include IEC 61850-8-1 and IEC 61850-9-2 that enable Ethernet to be used for process-level connections between transmission substation switchyards and control rooms. This paper presents an investigation of process bus protection performance, as the in-service behavior of multi-function process buses is largely unknown. An experimental approach was adopted that used a Real Time Digital Simulator and 'live' substation automation devices. The effect of sampling synchronization error and network traffic on transformer differential protection performance was assessed and compared to conventional hard-wired connections. Ethernet was used for all sampled value measurements, circuit breaker tripping, transformer tap-changer position reports and Precision Time Protocol synchronization of sampled value merging unit sampling. Test results showed that the protection relay under investigation operated correctly with process bus network traffic approaching 100% capacity. The protection system was not adversely affected by synchronizing errors significantly larger than the standards permit, suggesting these requirements may be overly conservative. This 'closed loop' approach, using substation automation hardware, validated the operation of protection relays under extreme conditions. Digital connections using a single shared Ethernet network outperformed conventional hard-wired solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor nanowires (NWs) show tremendous applications in micro/nano-electro-mechanical systems. In order to fulfill their promising applications, an understanding of the mechanical properties of NWs becomes increasingly important. Based on the large-scale molecular dynamics simulations, this work investigated the tensile properties of Si NWs with different faulted stacking layers. Different faulted stacking layers were introduced around the centre of the NW by the insertion or removal of certain stacking layers, inducing twins, intrinsic stacking fault, extrinsic stacking fault, and 9R crystal structure. Stress–strain curves obtained from the tensile deformation tests reveal that the presence of faulted stacking layers has induced a considerable decrease to the yield strength while only a minor decrease to Young's modulus. The brittle fracture phenomenon is observed for all tested NWs. In particular, the formation of a monatomic chain is observed for the perfect NW, which exists for a relatively wide strain range. For the defected NW, the monatomic chain appears and lasts shorter. Additionally, all defected NWs show a fracture area near the two ends, in contrast to the perfect NW whose fracture area is adjacent to the middle. This study provides a better understanding of the mechanical properties of Si NWs with the presence of different faulted stacking layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to establish the influence of the drying air characteristics on the drying performance and fluidization quality of bovine intestine for pet food, several drying tests have been carried out in a laboratory scale heat pump assisted fluid bed dryer. Bovine intestine samples were heat pump fluidized bed dried at atmospheric pressure and at temperatures below and above the materials freezing points, equipped with a continuous monitoring system. The investigation of the drying characteristics have been conducted in the temperature range −10 to 25 ◦C and the airflow in the range 1.5–2.5 m/s. Some experiments were conducted as single temperature drying experiments and others as two stage drying experiments employing two temperatures. An Arrhenius-type equation was used to interpret the influence of the drying air temperature on the effective diffusivity, calculated with the method of slopes in terms of energy activation, and this was found to be sensitive to the temperature. The effective diffusion coefficient of moisture transfer was determined by the Fickian method using uni-dimensional moisture movement in both moisture, removal by evaporation and combined sublimation and evaporation. Correlations expressing the effective moisture diffusivity and drying temperature are reported. Bovine particles were characterized according to the Geldart classification and the minimum fluidization velocity was calculated using the Ergun Equation and generalized equation for all drying conditions at the beginning and end of the trials. Walli’s model was used to categorize stability of the fluidization at the beginning and end of the dryingv for each trial. The determined Walli’s values were positive at the beginning and end of all trials indicating stable fluidization at the beginning and end for each drying condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Filopodial protrusion initiates cell migration, which decides the fate of cells in biological environments. In order to understand the structural stability of ultra-slender filopodial protrusion, we have developed an explicit modeling strategy that can study both static and dynamic characteristics of microfilament bundles. Our study reveals that the stability of filopodial protrusions is dependent on the density of F-actin crosslinkers. This cross-linkage strategy is a requirement for the optimization of cell structures, resulting in the provision and maintenance of adequate bending stiffness and buckling resistance while mediating the vibration. This cross-linkage strategy explains the mechanical stability of filopodial protrusion and helps understand the mechanisms of mechanically induced cellular activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced composite materials offer remarkable potential in the upgrade of civil engineering structures. The evolution of CFRP (carbon fibre reinforced polymer) technologies and their versatility for applications in civil constructions require comprehensive and reliable codes of practice. Guidelines are available on the rehabilitation and retrofit of concrete structures with advanced composite materials. However, there is a need to develop appropriate design guidelines for CFRP strengthened steel structures. It is important to understand the bond characteristics between CFRP and steel plates. This paper describes a series of double strap shear tests loaded in tension to investigate the bond between CFRP sheets and steel plates. Both normal modulus (240 GPa) and high modulus (640 GPa) CFRPs were used in the test program. Strain gauges were mounted to capture the strain distribution along the CFRP length. Different failure modes were observed for joints with normal modulus CFRP and those with high modulus CFRP. The strain distribution along the CFRP length is similar for the two cases. A shorter effective bond length was obtained for joints with high modulus CFRP whereas larger ultimate load carrying capacity can be achieved for joints with normal modulus CFRP when the bond length is long enough.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigated a range of factors underlying the impact of uncorrected refractive errors on laboratory-based tests related to driving. Results showed that refractive blur had a pronounced effect on recognition of briefly presented targets, particularly under low light conditions. Blur, in combination with audio distracters, also slowed a participant's reactions to road hazards in video presentations. This suggests that recognition of suddenly appearing road hazards might be slowed in the presence of refractive blur, particularly under conditions of distraction. These findings highlight the importance of correcting even small refractive errors for driving, particularly at night.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-linear finite deformations of articular cartilages under physiological loading conditions can be attributed to hyperelastic behavior. This paper contains experimental results of indentation tests in finite deformation and proposes an empirical based new generalized hyperelastic constitutive model to account for strain-rate dependency for humeral head cartilage tissues. The generalized model is based on existing hyperelastic constitutive relationships that are extensively used to represent biological tissues in biomechanical literature. The experimental results were obtained for three loading velocities, corresponding to low (1x10-3 s-1), moderate and high strain-rates (1x10-1 s-1), which represent physiological loading rates that are experienced in daily activities such as lifting, holding objects and sporting activities. Hyperelastic material parameters were identified by non linear curve fitting procedure. Analysis demonstrated that the material behavior of cartilage can be effectively decoupled into strain-rate independent(elastic) and dependent parts. Further, experiments conducted using different indenters indicated that the parameters obtained are significantly affected by the indenter size, potentially due to structural inhomogeneity of the tissue. The hyperelastic constitutive model developed in this paper opens a new avenue for the exploration of material properties of cartilage tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to develop an effective methodology for implementing lean manufacturing strategies and a leanness evaluation metric using continuous performance measurement (CPM). Design/methodology/approach – Based on five lean principles, a systematic lean implementation methodology for manufacturing organizations has been proposed. A simplified leanness evaluation metric consisting of both efficiency and effectiveness attributes of manufacturing performance has been developed for continuous evaluation of lean implementation. A case study to validate the proposed methodology has been conducted and proposed CPM metric has been used to assess the manufacturing leanness. Findings – Proposed methodology is able to systematically identify manufacturing wastes, select appropriate lean tools, identify relevant performance indicators, achieve significant performance improvement and establish lean culture in the organization. Continuous performance measurement matrices in terms of efficiency and effectiveness are proved to be appropriate methods for continuous evaluation of lean performance. Research limitations/implications – Effectiveness of the method developed has been demonstrated by applying it in a real life assembly process. However, more tests/applications will be necessary to generalize the findings. Practical implications – Results show that applying the methods developed, managers can successfully identify and remove manufacturing wastes from their production processes. By improving process efficiency, they can optimize their resource allocations. Manufacturers now have a validated step by step methodology for successfully implementing lean strategies. Originality/value – According to the authors’ best knowledge, this is the first known study that proposed a systematic lean implementation methodology based on lean principles and continuous improvement techniques. Evaluation of performance improvement by lean strategies is a critical issue. This study develops a simplified leanness evaluation metric considering both efficiency and effectiveness attributes and integrates it with the lean implementation methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclostationary models for the diagnostic signals measured on faulty rotating machineries have proved to be successful in many laboratory tests and industrial applications. The squared envelope spectrum has been pointed out as the most efficient indicator for the assessment of second order cyclostationary symptoms of damages, which are typical, for instance, of rolling element bearing faults. In an attempt to foster the spread of rotating machinery diagnostics, the current trend in the field is to reach higher levels of automation of the condition monitoring systems. For this purpose, statistical tests for the presence of cyclostationarity have been proposed during the last years. The statistical thresholds proposed in the past for the identification of cyclostationary components have been obtained under the hypothesis of having a white noise signal when the component is healthy. This need, coupled with the non-white nature of the real signals implies the necessity of pre-whitening or filtering the signal in optimal narrow-bands, increasing the complexity of the algorithm and the risk of losing diagnostic information or introducing biases on the result. In this paper, the authors introduce an original analytical derivation of the statistical tests for cyclostationarity in the squared envelope spectrum, dropping the hypothesis of white noise from the beginning. The effect of first order and second order cyclostationary components on the distribution of the squared envelope spectrum will be quantified and the effectiveness of the newly proposed threshold verified, providing a sound theoretical basis and a practical starting point for efficient automated diagnostics of machine components such as rolling element bearings. The analytical results will be verified by means of numerical simulations and by using experimental vibration data of rolling element bearings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diagnostics of rolling element bearings have been traditionally developed for constant operating conditions, and sophisticated techniques, like Spectral Kurtosis or Envelope Analysis, have proven their effectiveness by means of experimental tests, mainly conducted in small-scale laboratory test-rigs. Algorithms have been developed for the digital signal processing of data collected at constant speed and bearing load, with a few exceptions, allowing only small fluctuations of these quantities. Owing to the spreading of condition based maintenance in many industrial fields, in the last years a need for more flexible algorithms emerged, asking for compatibility with highly variable operating conditions, such as acceleration/deceleration transients. This paper analyzes the problems related with significant speed and load variability, discussing in detail the effect that they have on bearing damage symptoms, and propose solutions to adapt existing algorithms to cope with this new challenge. In particular, the paper will i) discuss the implication of variable speed on the applicability of diagnostic techniques, ii) address quantitatively the effects of load on the characteristic frequencies of damaged bearings and iii) finally present a new approach for bearing diagnostics in variable conditions, based on envelope analysis. The research is based on experimental data obtained by using artificially damaged bearings installed on a full scale test-rig, equipped with actual train traction system and reproducing the operation on a real track, including all the environmental noise, owing to track irregularity and electrical disturbances of such a harsh application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buffeting response of a cable-stayed bridge under construction is investigated through wind tunnel tests and numerical simulations. Two configurations of the erection stage have been considered and compared in terms of dynamic response and internal forces using the results of the experimental aeroelastic models. Moreover the results of a numerical model able to simulate the simultaneous effects of vortex shedding from tower and aeroelastic response of the deck are compared to the wind tunnel ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method of matching stiffness and continuous variable damping of an ECAS (electronically controlled air suspension) based on LQG (linear quadratic Gaussian) control was proposed to simultaneously improve the road-friendliness and ride comfort of a two-axle school bus. Taking account of the suspension nonlinearities and target-height-dependent variation in suspension characteristics, a stiffness model of the ECAS mounted on the drive axle of the bus was developed based on thermodynamics and the key parameters were obtained through field tests. By determining the proper range of the target height for the ECAS of the fully-loaded bus based on the design requirements of vehicle body bounce frequency, the control algorithm of the target suspension height (i.e., stiffness) was derived according to driving speed and road roughness. Taking account of the nonlinearities of a continuous variable semi-active damper, the damping force was obtained through the subtraction of the air spring force from the optimum integrated suspension force, which was calculated based on LQG control. Finally, a GA (genetic algorithm)-based matching method between stepped variable damping and stiffness was employed as a benchmark to evaluate the effectiveness of the LQG-based matching method. Simulation results indicate that compared with the GA-based matching method, both dynamic tire force and vehicle body vertical acceleration responses are markedly reduced around the vehicle body bounce frequency employing the LQG-based matching method, with peak values of the dynamic tire force PSD (power spectral density) decreased by 73.6%, 60.8% and 71.9% in the three cases, and corresponding reduction are 71.3%, 59.4% and 68.2% for the vehicle body vertical acceleration. A strong robustness to variation of driving speed and road roughness is also observed for the LQG-based matching method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue engineering focuses on the repair and regeneration of tissues through the use of biodegradable scaffold systems that structurally support regions of injury whilst recruiting and/or stimulating cell populations to rebuild the target tissue. Within bone tissue engineering, the effects of scaffold architecture on cellular response have not been conclusively characterized in a controlled-density environment. We present a theoretical and practical assessment of the effects of polycaprolactone (PCL) scaffold architectural modifications on mechanical and flow characteristics as well as MC3T3-E1 preosteoblast cellular response in an in vitro static plate and custom-designed perfusion bioreactor model. Four scaffold architectures were contrasted, which varied in inter-layer lay-down angle and offset between layers, whilst maintaining a structural porosity of 60 ± 5%. We established that as layer angle was decreased (90° vs. 60°) and offset was introduced (0 vs. 0.5 between layers), structural stiffness, yield stress, strength, pore size and permeability decreased, whilst computational fluid dynamics-modeled wall shear stress was increased. Most significant effects were noted with layer offset. Seeding efficiencies in static culture were also dramatically increased due to offset (~45% to ~86%), with static culture exhibiting a much higher seeding efficiency than perfusion culture. Scaffold architecture had minimal effect on cell response in static culture. However, architecture influenced osteogenic differentiation in perfusion culture, likely by modifying the microfluidic environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compromised angiogenesis appears to be a major limitation in various suboptimal bone healing situations. Appropriate mechanical stimuli support blood vessel formation in vivo and improve healing outcomes. However, the mechanisms responsible for this association are unclear. To address this question, the paracrine angiogenic potential of early human fracture haematoma and its responsiveness to mechanical loading, as well as angiogenic growth factors involved, were investigated in vitro. Human haematomas were collected from healthy patients undergoing surgery within 72. h after bone fracture. The haematomas were embedded in a fibrin matrix, and cultured in a bioreactor resembling the in vivo conditions of the early phase of bone healing (20 compression, 1. Hz) over 3. days. Conditioned medium (CM) from the bioreactor was then analyzed. The matrices were also incubated in fresh medium for a further 24. h to evaluate the persistence of the effects. Growth factor (GF) concentrations were measured in the CM by ELISAs. In vitro tube formation assays were conducted on Matrigel with the HMEC-1 cell line, with or without inhibition of vascular endothelial growth factor receptor 2 (VEGFR2). Cell numbers were quantified using an MTS test. In vitro endothelial tube formation was enhanced by CM from haematomas, compared to fibrin controls. The angiogenesis regulators, vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGF-β1), were released into the haematoma CM, but not angiopoietins 1 or 2 (Ang1, 2), basic fibroblast growth factor (bFGF) or platelet-derived growth factor (PDGF). Mechanical stimulation of haematomas, but not fibrin controls, further increased the induction of tube formation by their CM. The mechanically stimulated haematoma matrices retained their elevated pro-angiogenic capacity for 24. h. The pro-angiogenic effect was cancelled by inhibition of VEGFR2 signalling. VEGF concentrations in CM tended to be elevated by mechanical stimulation; this was significant in haematomas from younger, but not from older patients. Other GFs were not mechanically regulated. In conclusion, the paracrine pro-angiogenic capacity of early human haematomas is enhanced by mechanical stimulation. This effect lasts even after removing the mechanical stimulus and appears to be VEGFR2-dependent.