232 resultados para Intra prediction
Resumo:
This paper studies the problem of selecting users in an online social network for targeted advertising so as to maximize the adoption of a given product. In previous work, two families of models have been considered to address this problem: direct targeting and network-based targeting. The former approach targets users with the highest propensity to adopt the product, while the latter approach targets users with the highest influence potential – that is users whose adoption is most likely to be followed by subsequent adoptions by peers. This paper proposes a hybrid approach that combines a notion of propensity and a notion of influence into a single utility function. We show that targeting a fixed number of high-utility users results in more adoptions than targeting either highly influential users or users with high propensity.
Resumo:
In this paper, a refined classic noise prediction method based on the VISSIM and FHWA noise prediction model is formulated to analyze the sound level contributed by traffic on the Nanjing Lukou airport connecting freeway before and after widening. The aim of this research is to (i) assess the traffic noise impact on the Nanjing University of Aeronautics and Astronautics (NUAA) campus before and after freeway widening, (ii) compare the prediction results with field data to test the accuracy of this method, (iii) analyze the relationship between traffic characteristics and sound level. The results indicate that the mean difference between model predictions and field measurements is acceptable. The traffic composition impact study indicates that buses (including mid-sized trucks) and heavy goods vehicles contribute a significant proportion of total noise power despite their low traffic volume. In addition, speed analysis offers an explanation for the minor differences in noise level across time periods. Future work will aim at reducing model error, by focusing on noise barrier analysis using the FEM/BEM method and modifying the vehicle noise emission equation by conducting field experimentation.
Resumo:
Masonry under compression is affected by the properties of its constituents and their interfaces. In spite of extensive investigations of the behaviour of masonry under compression, the information in the literature cannot be regarded as comprehensive due to ongoing inventions of new generation products – for example, polymer modified thin layer mortared masonry and drystack masonry. As comprehensive experimental studies are very expensive, an analytical model inspired by damage mechanics is developed and applied to the prediction of the compressive behaviour of masonry in this paper. The model incorporates a parabolic progressively softening stress-strain curve for the units and a progressively stiffening stress-strain curve until a threshold strain for the combined mortar and the unit-mortar interfaces is reached. The model simulates the mutual constraints imposed by each of these constituents through their respective tensile and compressive behaviour and volumetric changes. The advantage of the model is that it requires only the properties of the constituents and considers masonry as a continuum and computes the average properties of the composite masonry prisms/wallettes; it does not require discretisation of prism or wallette similar to the finite element methods. The capability of the model in capturing the phenomenological behaviour of masonry with appropriate elastic response, stiffness degradation and post peak softening is presented through numerical examples. The fitting of the experimental data to the model parameters is demonstrated through calibration of some selected test data on units and mortar from the literature; the calibrated model is shown to predict the responses of the experimentally determined masonry built using the corresponding units and mortar quite well. Through a series of sensitivity studies, the model is also shown to predict the masonry strength appropriately for changes to the properties of the units and mortar, the mortar joint thickness and the ratio of the height of unit to mortar joint thickness. The unit strength is shown to affect the masonry strength significantly. Although the mortar strength has only a marginal effect, reduction in mortar joint thickness is shown to have a profound effect on the masonry strength. The results obtained from the model are compared with the various provisions in the Australian Masonry Structures Standard AS3700 (2011) and Eurocode 6.
Resumo:
The past several years have seen significant advances in the development of computational methods for the prediction of the structure and interactions of coiled-coil peptides. These methods are generally based on pairwise correlations of amino acids, helical propensity, thermal melts and the energetics of sidechain interactions, as well as statistical patterns based on Hidden Markov Model (HMM) and Support Vector Machine (SVM) techniques. These methods are complemented by a number of public databases that contain sequences, motifs, domains and other details of coiled-coil structures identified by various algorithms. Some of these computational methods have been developed to make predictions of coiled-coil structure on the basis of sequence information; however, structural predictions of the oligomerisation state of these peptides still remains largely an open question due to the dynamic behaviour of these molecules. This review focuses on existing in silico methods for the prediction of coiled-coil peptides of functional importance using sequence and/or three-dimensional structural data.
Resumo:
Heparin is a glycosaminoglycan known to bind bone morphogenetic proteins (BMPs) and the growth and differentiation factors (GDFs) and has strong and variable effects on BMP osteogenic activity. In this paper we report our predictions of the likely heparin binding sites for BMP-2 and 14. The N-terminal sequences upstream of TGF-β-type cysteine-knot domains in BMP-2, 7 and 14 contain the basic residues arginine and lysine, which are key components of the heparin/HS-binding sites, with these residues being highly non-conserved. Importantly, evolutionary conserved surfaces on the beta sheets are required for interactions with receptors and antagonists. Furthermore, BMP-2 has electropositive surfaces on two sides compared to BMP-7 and BMP-14. Molecular docking simulations suggest the presence of high and low affinity binding sites in dimeric BMP-2. Histidines were found to play a role in the interactions of BMP-2 with heparin; however, a pKa analysis suggests that histidines are likely not protonated. This is indicative that interactions of BMP-2 with heparin do not require acidic pH. Taken together, non-conserved amino acid residues in the N-terminus and residues protruding from the beta sheet (not overlapping with the receptor binding sites and the dimeric interface) and not C-terminal are found to be important for heparin–BMP interactions.
Resumo:
Multi-agent systems implicate a high degree of concurrency at both the Inter- and Intra-Agent levels. Scalable, fault tolerant, Agent Grooming Environment (SAGE), the second generation, FIPA compliant MAS requires a built in mechanism to achieve both the Inter- and Intra-Agent concurrency. This paper dilates upon an attempt to provide a reliable, efficient and light-weight solution to provide intra-agent concurrency with-in the internal agent architecture of SAGE. It addresses the issues related to using the JAVA threading model to provide this level of concurrency to the agent and provides an alternative approach that is based on an eventdriven, concurrent and user-scalable multi-tasking model for the agent's internal model. The findings of this paper show that our proposed approach is suitable for providing an efficient and lightweight concurrent task model for SA GE and considerably outweighs the performance of multithreaded tasking model based on JAVA in terms of throughput and efficiency. This has been illustrated using the practical implementation and evaluation of both models. © 2004 IEEE.
Resumo:
BACKGROUND Polygenic risk scores comprising established susceptibility variants have shown to be informative classifiers for several complex diseases including prostate cancer. For prostate cancer it is unknown if inclusion of genetic markers that have so far not been associated with prostate cancer risk at a genome-wide significant level will improve disease prediction. METHODS We built polygenic risk scores in a large training set comprising over 25,000 individuals. Initially 65 established prostate cancer susceptibility variants were selected. After LD pruning additional variants were prioritized based on their association with prostate cancer. Six-fold cross validation was performed to assess genetic risk scores and optimize the number of additional variants to be included. The final model was evaluated in an independent study population including 1,370 cases and 1,239 controls. RESULTS The polygenic risk score with 65 established susceptibility variants provided an area under the curve (AUC) of 0.67. Adding an additional 68 novel variants significantly increased the AUC to 0.68 (P = 0.0012) and the net reclassification index with 0.21 (P = 8.5E-08). All novel variants were located in genomic regions established as associated with prostate cancer risk. CONCLUSIONS Inclusion of additional genetic variants from established prostate cancer susceptibility regions improves disease prediction. Prostate 75:1467–1474, 2015. © 2015 Wiley Periodicals, Inc.