416 resultados para Graphic methods.
Resumo:
The pioneering work of Runge and Kutta a hundred years ago has ultimately led to suites of sophisticated numerical methods suitable for solving complex systems of deterministic ordinary differential equations. However, in many modelling situations, the appropriate representation is a stochastic differential equation and here numerical methods are much less sophisticated. In this paper a very general class of stochastic Runge-Kutta methods is presented and much more efficient classes of explicit methods than previous extant methods are constructed. In particular, a method of strong order 2 with a deterministic component based on the classical Runge-Kutta method is constructed and some numerical results are presented to demonstrate the efficacy of this approach.
Resumo:
In this paper, general order conditions and a global convergence proof are given for stochastic Runge Kutta methods applied to stochastic ordinary differential equations ( SODEs) of Stratonovich type. This work generalizes the ideas of B-series as applied to deterministic ordinary differential equations (ODEs) to the stochastic case and allows a completely general formalism for constructing high order stochastic methods, either explicit or implicit. Some numerical results will be given to illustrate this theory.
Resumo:
Stochastic differential equations (SDEs) arise fi om physical systems where the parameters describing the system can only be estimated or are subject to noise. There has been much work done recently on developing numerical methods for solving SDEs. This paper will focus on stability issues and variable stepsize implementation techniques for numerically solving SDEs effectively. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In recent years considerable attention has been paid to the numerical solution of stochastic ordinary differential equations (SODEs), as SODEs are often more appropriate than their deterministic counterparts in many modelling situations. However, unlike the deterministic case numerical methods for SODEs are considerably less sophisticated due to the difficulty in representing the (possibly large number of) random variable approximations to the stochastic integrals. Although Burrage and Burrage [High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations, Applied Numerical Mathematics 22 (1996) 81-101] were able to construct strong local order 1.5 stochastic Runge-Kutta methods for certain cases, it is known that all extant stochastic Runge-Kutta methods suffer an order reduction down to strong order 0.5 if there is non-commutativity between the functions associated with the multiple Wiener processes. This order reduction down to that of the Euler-Maruyama method imposes severe difficulties in obtaining meaningful solutions in a reasonable time frame and this paper attempts to circumvent these difficulties by some new techniques. An additional difficulty in solving SODEs arises even in the Linear case since it is not possible to write the solution analytically in terms of matrix exponentials unless there is a commutativity property between the functions associated with the multiple Wiener processes. Thus in this present paper first the work of Magnus [On the exponential solution of differential equations for a linear operator, Communications on Pure and Applied Mathematics 7 (1954) 649-673] (applied to deterministic non-commutative Linear problems) will be applied to non-commutative linear SODEs and methods of strong order 1.5 for arbitrary, linear, non-commutative SODE systems will be constructed - hence giving an accurate approximation to the general linear problem. Secondly, for general nonlinear non-commutative systems with an arbitrary number (d) of Wiener processes it is shown that strong local order I Runge-Kutta methods with d + 1 stages can be constructed by evaluated a set of Lie brackets as well as the standard function evaluations. A method is then constructed which can be efficiently implemented in a parallel environment for this arbitrary number of Wiener processes. Finally some numerical results are presented which illustrate the efficacy of these approaches. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In many modeling situations in which parameter values can only be estimated or are subject to noise, the appropriate mathematical representation is a stochastic ordinary differential equation (SODE). However, unlike the deterministic case in which there are suites of sophisticated numerical methods, numerical methods for SODEs are much less sophisticated. Until a recent paper by K. Burrage and P.M. Burrage (1996), the highest strong order of a stochastic Runge-Kutta method was one. But K. Burrage and P.M. Burrage (1996) showed that by including additional random variable terms representing approximations to the higher order Stratonovich (or Ito) integrals, higher order methods could be constructed. However, this analysis applied only to the one Wiener process case. In this paper, it will be shown that in the multiple Wiener process case all known stochastic Runge-Kutta methods can suffer a severe order reduction if there is non-commutativity between the functions associated with the Wiener processes. Importantly, however, it is also suggested how this order can be repaired if certain commutator operators are included in the Runge-Kutta formulation. (C) 1998 Elsevier Science B.V. and IMACS. All rights reserved.
Resumo:
In Burrage and Burrage [1] it was shown that by introducing a very general formulation for stochastic Runge-Kutta methods, the previous strong order barrier of order one could be broken without having to use higher derivative terms. In particular, methods of strong order 1.5 were developed in which a Stratonovich integral of order one and one of order two were present in the formulation. In this present paper, general order results are proven about the maximum attainable strong order of these stochastic Runge-Kutta methods (SRKs) in terms of the order of the Stratonovich integrals appearing in the Runge-Kutta formulation. In particular, it will be shown that if an s-stage SRK contains Stratonovich integrals up to order p then the strong order of the SRK cannot exceed min{(p + 1)/2, (s - 1)/2), p greater than or equal to 2, s greater than or equal to 3 or 1 if p = 1.
Resumo:
Nitrogen balance is increasingly used as an indicator of the environmental performance of agricultural sector in national, international, and global contexts. There are three main methods of accounting the national nitrogen balance: farm gate, soil surface, and soil system. OECD (2008) recently reported the nitrogen and phosphorus balances for member countries for the 1985 - 2004 period using the soil surface method. The farm gate and soil system methods were also used in some international projects. Some studies have provided the comparison among these methods and the conclusion is mixed. The motivation of this present paper was to combine these three methods to provide a more detailed auditing of the nitrogen balance and flows for national agricultural production. In addition, the present paper also provided a new strategy of using reliable international and national data sources to calculate nitrogen balance using the farm gate method. The empirical study focused on the nitrogen balance of OECD countries for the period from 1985 to 2003. The N surplus sent to the total environment of OECD surged dramatically in early 1980s, gradually decreased during 1990s but exhibited an increasing trends in early 2000s. The overall N efficiency however fluctuated without a clear increasing trend. The eco-environmental ranking shows that Australia and Ireland were the worst while Korea and Greece were the best.
Resumo:
Compression ignition (CI) engine design is subject to many constraints which presents a multi-criteria optimisation problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient, but must also deliver low gaseous, particulate and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming are minimised. Consequently, this study undertakes a multi-criteria analysis which seeks to identify alternative fuels, injection technologies and combustion strategies that could potentially satisfy these CI engine design constraints. Three datasets are analysed with the Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) algorithm to explore the impact of 1): an ethanol fumigation system, 2): alternative fuels (20 % biodiesel and synthetic diesel) and alternative injection technologies (mechanical direct injection and common rail injection), and 3): various biodiesel fuels made from 3 feedstocks (i.e. soy, tallow, and canola) tested at several blend percentages (20-100 %) on the resulting emissions and efficiency profile of the various test engines. The results show that moderate ethanol substitutions (~20 % by energy) at moderate load, high percentage soy blends (60-100 %), and alternative fuels (biodiesel and synthetic diesel) provide an efficiency and emissions profile that yields the most “preferred” solutions to this multi-criteria engine design problem. Further research is, however, required to reduce Reactive Oxygen Species (ROS) emissions with alternative fuels, and to deliver technologies that do not significantly reduce the median diameter of particle emissions.
Resumo:
This paper describes an approach to investigate the adoption of Web 2.0 in the classroom using a mixed methods study. By using a combination of qualitative or quantitative data collection and analysis techniques, we attempt to synergize the results and provide a more valid understanding of Web 2.0 adoption for learning by both teachers and students. This approach is expected to yield a better holistic view on the adoption issues associated with the e-learning 2.0 concept in current higher education as opposed to single method studies done previously. This paper also presents some early findings of e-learning 2.0 adoption using this research method
Resumo:
These notes were compiled from several authorities to be used for teaching and learning purposes here at QUT, with the focus on first and second year landscape architecture design studio units.
Resumo:
Purpose. The purpose of this article was to present methods capable of estimating the size and shape of the human eye lens without resorting to phakometry or magnetic resonance imaging (MRI). Methods. Previously published biometry and phakometry data of 66 emmetropic eyes of 66 subjects (age range [18, 63] years, spherical equivalent range [−0.75, +0.75] D) were used to define multiple linear regressions for the radii of curvature and thickness of the lens, from which the lens refractive index could be derived. MRI biometry was also available for a subset of 30 subjects, from which regressions could be determined for the vertex radii of curvature, conic constants, equatorial diameter, volume, and surface area. All regressions were compared with the phakometry and MRI data; the radii of curvature regressions were also compared with a method proposed by Bennett and Royston et al. Results. The regressions were in good agreement with the original measurements. This was especially the case for the regressions of lens thickness, volume, and surface area, which each had an R2 > 0.6. The regression for the posterior radius of curvature had an R2 < 0.2, making this regression unreliable. For all other regressions we found 0.25 < R2 < 0.6. The Bennett-Royston method also produced a good estimation of the radii of curvature, provided its parameters were adjusted appropriately. Conclusions. The regressions presented in this article offer a valuable alternative in case no measured lens biometry values are available; however care must be taken for possible outliers.
Resumo:
Metrics such as passengers per square metre have been developed to define optimum or crowded rail passenger density. Whilst such metrics are important to operational procedures, service evaluation and reporting, they fail to fully capture and convey the ways in which passengers experience crowded situations. This paper reports findings from a two year study of rail passenger crowding in five Australian capital cities which involved a novel mixed-methodology including ethnography, focus groups and an online stated preference choice experiment. The resulting data address the following four fundamental research questions: 1) to what extent are Australian rail passengers concerned by crowding, 2) what conditions exacerbate feelings of crowdedness, 3) what conditions mitigate feelings of crowdedness, and 4) how can we usefully understand passengers’ experiences of crowdedness? It concludes with some observations on the significance and implications of these findings for customer service provision. The findings outlined in this paper demonstrate that the experience of crowdedness (including its tolerance) cannot be understood in isolation from other customer services issues such as interior design, quality of environment, safety and public health concerns. It is hypothesised that tolerance of crowding will increase alongside improvements to overall customer service. This was the first comprehensive study of crowding in the Australian rail industry.
Resumo:
This study uses borehole geophysical log data of sonic velocity and electrical resistivity to estimate permeability in sandstones in the northern Galilee Basin, Queensland. The prior estimates of permeability are calculated according to the deterministic log–log linear empirical correlations between electrical resistivity and measured permeability. Both negative and positive relationships are influenced by the clay content. The prior estimates of permeability are updated in a Bayesian framework for three boreholes using both the cokriging (CK) method and a normal linear regression (NLR) approach to infer the likelihood function. The results show that the mean permeability estimated from the CK-based Bayesian method is in better agreement with the measured permeability when a fairly apparent linear relationship exists between the logarithm of permeability and sonic velocity. In contrast, the NLR-based Bayesian approach gives better estimates of permeability for boreholes where no linear relationship exists between logarithm permeability and sonic velocity.