299 resultados para FUZZY INFERENCE SYSTEM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Approach with Vertical Guidance (APV) is an instrument approach procedure which provides horizontal and vertical guidance to a pilot on approach to landing in reduced visibility conditions. APV approaches can greatly reduce the safety risk to general aviation by improving the pilot’s situational awareness. In particular the incidence of Controlled Flight Into Terrain (CFIT) which has occurred in a number of fatal air crashes in general aviation over the past decade in Australia, can be reduced. APV approaches can also improve general aviation operations. If implemented at Australian airports, APV approach procedures are expected to bring a cost saving of millions of dollars to the economy due to fewer missed approaches, diversions and an increased safety benefit. The provision of accurate horizontal and vertical guidance is achievable using the Global Positioning System (GPS). Because aviation is a safety of life application, an aviation-certified GPS receiver must have integrity monitoring or augmentation to ensure that its navigation solution can be trusted. However, the difficulty with the current GPS satellite constellation alone meeting APV integrity requirements, the susceptibility of GPS to jamming or interference and the potential shortcomings of proposed augmentation solutions for Australia such as the Ground-based Regional Augmentation System (GRAS) justifies the investigation of Aircraft Based Augmentation Systems (ABAS) as an alternative integrity solution for general aviation. ABAS augments GPS with other sensors at the aircraft to help it meet the integrity requirements. Typical ABAS designs assume high quality inertial sensors to provide an accurate reference trajectory for Kalman filters. Unfortunately high-quality inertial sensors are too expensive for general aviation. In contrast to these approaches the purpose of this research is to investigate fusing GPS with lower-cost Micro-Electro-Mechanical System (MEMS) Inertial Measurement Units (IMU) and a mathematical model of aircraft dynamics, referred to as an Aircraft Dynamic Model (ADM) in this thesis. Using a model of aircraft dynamics in navigation systems has been studied before in the available literature and shown to be useful particularly for aiding inertial coasting or attitude determination. In contrast to these applications, this thesis investigates its use in ABAS. This thesis presents an ABAS architecture concept which makes use of a MEMS IMU and ADM, named the General Aviation GPS Integrity System (GAGIS) for convenience. GAGIS includes a GPS, MEMS IMU, ADM, a bank of Extended Kalman Filters (EKF) and uses the Normalized Solution Separation (NSS) method for fault detection. The GPS, IMU and ADM information is fused together in a tightly-coupled configuration, with frequent GPS updates applied to correct the IMU and ADM. The use of both IMU and ADM allows for a number of different possible configurations. Three are investigated in this thesis; a GPS-IMU EKF, a GPS-ADM EKF and a GPS-IMU-ADM EKF. The integrity monitoring performance of the GPS-IMU EKF, GPS-ADM EKF and GPS-IMU-ADM EKF architectures are compared against each other and against a stand-alone GPS architecture in a series of computer simulation tests of an APV approach. Typical GPS, IMU, ADM and environmental errors are simulated. The simulation results show the GPS integrity monitoring performance achievable by augmenting GPS with an ADM and low-cost IMU for a general aviation aircraft on an APV approach. A contribution to research is made in determining whether a low-cost IMU or ADM can provide improved integrity monitoring performance over stand-alone GPS. It is found that a reduction of approximately 50% in protection levels is possible using the GPS-IMU EKF or GPS-ADM EKF as well as faster detection of a slowly growing ramp fault on a GPS pseudorange measurement. A second contribution is made in determining how augmenting GPS with an ADM compares to using a low-cost IMU. By comparing the results for the GPS-ADM EKF against the GPS-IMU EKF it is found that protection levels for the GPS-ADM EKF were only approximately 2% higher. This indicates that the GPS-ADM EKF may potentially replace the GPS-IMU EKF for integrity monitoring should the IMU ever fail. In this way the ADM may contribute to the navigation system robustness and redundancy. To investigate this further, a third contribution is made in determining whether or not the ADM can function as an IMU replacement to improve navigation system redundancy by investigating the case of three IMU accelerometers failing. It is found that the failed IMU measurements may be supplemented by the ADM and adequate integrity monitoring performance achieved. Besides treating the IMU and ADM separately as in the GPS-IMU EKF and GPS-ADM EKF, a fourth contribution is made in investigating the possibility of fusing the IMU and ADM information together to achieve greater performance than either alone. This is investigated using the GPS-IMU-ADM EKF. It is found that the GPS-IMU-ADM EKF can achieve protection levels approximately 3% lower in the horizontal and 6% lower in the vertical than a GPS-IMU EKF. However this small improvement may not justify the complexity of fusing the IMU with an ADM in practical systems. Affordable ABAS in general aviation may enhance existing GPS-only fault detection solutions or help overcome any outages in augmentation systems such as the Ground-based Regional Augmentation System (GRAS). Countries such as Australia which currently do not have an augmentation solution for general aviation could especially benefit from the economic savings and safety benefits of satellite navigation-based APV approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current epidemic of paediatric obesity is consistent with a myriad of health-related comorbid conditions. Despite the higher prevalence of orthopaedic conditions in overweight children, a paucity of published research has considered the influence of these conditions on the ability to undertake physical activity. As physical activity participation is directly related to improvements in physical fitness, skeletal health and metabolic conditions, higher levels of physical activity are encouraged, and exercise is commonly prescribed in the treatment and management of childhood obesity. However, research has not correlated orthopaedic conditions, including the increased joint pain and discomfort that is commonly reported by overweight children, with decreases in physical activity. Research has confirmed that overweight children typically display a slower, more tentative walking pattern with increased forces to the hip, knee and ankle during 'normal' gait. This research, combined with anthropometric data indicating a higher prevalence of musculoskeletal malalignment in overweight children, suggests that such individuals are poorly equipped to undertake certain forms of physical activity. Concomitant increases in obesity and decreases in physical activity level strongly support the need to better understand the musculoskeletal factors associated with the performance of motor tasks by overweight and obese children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the quest for shorter time-to-market, higher quality and reduced cost, model-driven software development has emerged as a promising approach to software engineering. The central idea is to promote models to first-class citizens in the development process. Starting from a set of very abstract models in the early stage of the development, they are refined into more concrete models and finally, as a last step, into code. As early phases of development focus on different concepts compared to later stages, various modelling languages are employed to most accurately capture the concepts and relations under discussion. In light of this refinement process, translating between modelling languages becomes a time-consuming and error-prone necessity. This is remedied by model transformations providing support for reusing and automating recurring translation efforts. These transformations typically can only be used to translate a source model into a target model, but not vice versa. This poses a problem if the target model is subject to change. In this case the models get out of sync and therefore do not constitute a coherent description of the software system anymore, leading to erroneous results in later stages. This is a serious threat to the promised benefits of quality, cost-saving, and time-to-market. Therefore, providing a means to restore synchronisation after changes to models is crucial if the model-driven vision is to be realised. This process of reflecting changes made to a target model back to the source model is commonly known as Round-Trip Engineering (RTE). While there are a number of approaches to this problem, they impose restrictions on the nature of the model transformation. Typically, in order for a transformation to be reversed, for every change to the target model there must be exactly one change to the source model. While this makes synchronisation relatively “easy”, it is ill-suited for many practically relevant transformations as they do not have this one-to-one character. To overcome these issues and to provide a more general approach to RTE, this thesis puts forward an approach in two stages. First, a formal understanding of model synchronisation on the basis of non-injective transformations (where a number of different source models can correspond to the same target model) is established. Second, detailed techniques are devised that allow the implementation of this understanding of synchronisation. A formal underpinning for these techniques is drawn from abductive logic reasoning, which allows the inference of explanations from an observation in the context of a background theory. As non-injective transformations are the subject of this research, there might be a number of changes to the source model that all equally reflect a certain target model change. To help guide the procedure in finding “good” source changes, model metrics and heuristics are investigated. Combining abductive reasoning with best-first search and a “suitable” heuristic enables efficient computation of a number of “good” source changes. With this procedure Round-Trip Engineering of non-injective transformations can be supported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis maps the author's journey from a music composition practice to a composition and performance practice. The work involves the development of a software library for the purpose of encapsulating compositional ideas in software, and realising these ideas in performance through a live coding computer music practice. The thesis examines what artistic practice emerges through live coding and software development, and does this permit a blurring between the activities of music composition and performance. The role that software design plays in affecting musical outcomes is considered to gain an insight into how software development contributes to artistic development. The relationship between music composition and performance is also examined to identify the means by which engaging in live coding and software development can bring these activities together. The thesis, situated within the discourse of practice led research, documents a journey which uses the experience of software development and performance as a means to guide the direction of the research. The journey serves as an experiment for the author in engaging an hitherto unfamiliar musical practice, and as a roadmap for others seeking to modify or broaden their artistic practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This document outlines the system submitted by the Speech and Audio Research Laboratory at the Queensland University of Technology (QUT) for the Speaker Identity Verication: Application task of EVALITA 2009. This submission consisted of a score-level fusion of three component systems, a joint-factor GMM system and two SVM systems using GLDS and GMM supervector kernels. Development and evaluation results are presented, demonstrating the effectiveness of this fused system approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel members can be assembled in various combinations to provide cost-efficient and safe light gauge floor systems for buildings. Such Light gauge Steel Framing (LSF) systems are widely accepted in industrial and commercial building construction. An example application is in floor-ceiling systems. Light gauge steel floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire-rated floor-ceiling assemblies formed with new materials and construction methodologies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite floor-ceiling system has been developed to provide higher fire rating under standard fire conditions. But its increased fire rating could not be determined using the currently available design methods. Therefore a research project was carried out to investigate its structural and fire resistance behaviour under standard fire conditions. In this research project full scale experimental tests of the new LSF floor system based on a composite ceiling unit were undertaken using a gas furnace at the Queensland University of Technology. Both the conventional and the new steel floor-ceiling systems were tested under structural and fire loads. Full scale fire tests provided a good understanding of the fire behaviour of the LSF floor-ceiling systems and confirmed the superior performance of the new composite system. This paper presents the details of this research into the structural and fire behaviour of light gauge steel floor systems protected by the new composite panel, and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article examines the relationship between the arts and national innovation policy in Australia, pivoting around the Venturous Australia report released in September 2008 as part of the Review of the National Innovation System (RNIS). This came at a time of optimism that the arts sector would be included in Australia’s federal innovation policy. However, despite the report’s broad vision for innovation and specific commentary on the arts, the more ambitious hopes of arts sector advocates remained unfulfilled. This article examines the entwining discourses of creativity and innovation which emerged globally and in Australia prior to the RNIS, before analysing Venturous Australia in terms of the arts and the ongoing science-and-technology bias to innovation policy. It ends by considering why sector-led policy research and lobbying has to date proved unsuccessful and then suggests what public policy development is now needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of vision sensors (as opposed to radar and TCAS). This paper describes the development and evaluation of a real-time vision-based collision detection system suitable for fixed-wing aerial robotics. Using two fixed-wing UAVs to recreate various collision-course scenarios, we were able to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. This type of image data is extremely scarce and was invaluable in evaluating the detection performance of two candidate target detection approaches. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We overcame the challenge of achieving real-time computational speeds by exploiting the parallel processing architectures of graphics processing units found on commercially-off-the-shelf graphics devices. Our chosen GPU device suitable for integration onto UAV platforms can be expected to handle real-time processing of 1024 by 768 pixel image frames at a rate of approximately 30Hz. Flight trials using manned Cessna aircraft where all processing is performed onboard will be conducted in the near future, followed by further experiments with fully autonomous UAV platforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a biologically inspired approach to vision-only simultaneous localization and mapping (SLAM) on ground-based platforms. The core SLAM system, dubbed RatSLAM, is based on computational models of the rodent hippocampus, and is coupled with a lightweight vision system that provides odometry and appearance information. RatSLAM builds a map in an online manner, driving loop closure and relocalization through sequences of familiar visual scenes. Visual ambiguity is managed by maintaining multiple competing vehicle pose estimates, while cumulative errors in odometry are corrected after loop closure by a map correction algorithm. We demonstrate the mapping performance of the system on a 66 km car journey through a complex suburban road network. Using only a web camera operating at 10 Hz, RatSLAM generates a coherent map of the entire environment at real-time speed, correctly closing more than 51 loops of up to 5 km in length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The challenge of persistent navigation and mapping is to develop an autonomous robot system that can simultaneously localize, map and navigate over the lifetime of the robot with little or no human intervention. Most solutions to the simultaneous localization and mapping (SLAM) problem aim to produce highly accurate maps of areas that are assumed to be static. In contrast, solutions for persistent navigation and mapping must produce reliable goal-directed navigation outcomes in an environment that is assumed to be in constant flux. We investigate the persistent navigation and mapping problem in the context of an autonomous robot that performs mock deliveries in a working office environment over a two-week period. The solution was based on the biologically inspired visual SLAM system, RatSLAM. RatSLAM performed SLAM continuously while interacting with global and local navigation systems, and a task selection module that selected between exploration, delivery, and recharging modes. The robot performed 1,143 delivery tasks to 11 different locations with only one delivery failure (from which it recovered), traveled a total distance of more than 40 km over 37 hours of active operation, and recharged autonomously a total of 23 times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper details the design of an autonomous helicopter control system using a low cost sensor suite. Control is maintained using simple nested PID loops. Aircraft attitude, velocity, and height is estimated using an in-house designed IMU and vision system. Information is combined using complimentary filtering. The aircraft is shown to be stabilised and responding to high level demands on all axes, including heading, height, lateral velocity and longitudinal velocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper details the design of an autonomous helicopter control system using a low cost sensor suite. Control is maintained using simple nested PID loops. Aircraft attitude, velocity, and height is estimated using an in-house designed IMU and vision system. Information is combined using complimentary filtering. The aircraft is shown to be stabilised and responding to high level demands on all axes, including heading, height, lateral velocity and longitudinal velocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper illustrates the prediction of opponent behaviour in a competitive, highly dynamic, multi-agent and partially observable environment, namely RoboCup small size league robot soccer. The performance is illustrated in the context of the highly successful robot soccer team, the RoboRoos. The project is broken into three tasks; classification of behaviours, modelling and prediction of behaviours and integration of the predictions into the existing planning system. A probabilistic approach is taken to dealing with the uncertainty in the observations and with representing the uncertainty in the prediction of the behaviours. Results are shown for a classification system using a Naïve Bayesian Network that determines the opponent’s current behaviour. These results are compared to an expert designed fuzzy behaviour classification system. The paper illustrates how the modelling system will use the information from behaviour classification to produce probability distributions that model the manner with which the opponents perform their behaviours. These probability distributions are show to match well with the existing multi-agent planning system (MAPS) that forms the core of the RoboRoos system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the real time global vision system for the robot soccer team the RoboRoos. It has a highly optimised pipeline that includes thresholding, segmenting, colour normalising, object recognition and perspective and lens correction. It has a fast ‘paint’ colour calibration system that can calibrate in any face of the YUV or HSI cube. It also autonomously selects both an appropriate camera gain and colour gains robot regions across the field to achieve colour uniformity. Camera geometry calibration is performed automatically from selection of keypoints on the field. The system achieves a position accuracy of better than 15mm over a 4m × 5.5m field, and orientation accuracy to within 1°. It processes 614 × 480 pixels at 60Hz on a 2.0GHz Pentium 4 microprocessor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RatSLAM is a vision-based SLAM system based on extended models of the rodent hippocampus. RatSLAM creates environment representations that can be processed by the experience mapping algorithm to produce maps suitable for goal recall. The experience mapping algorithm also allows RatSLAM to map environments many times larger than could be achieved with a one to one correspondence between the map and environment, by reusing the RatSLAM maps to represent multiple sections of the environment. This paper describes experiments investigating the effects of the environment-representation size ratio and visual ambiguity on mapping and goal navigation performance. The experiments demonstrate that system performance is weakly dependent on either parameter in isolation, but strongly dependent on their joint values.