281 resultados para Direct shear laboratory testing
Resumo:
Analytical expressions are derived for the mean and variance, of estimates of the bispectrum of a real-time series assuming a cosinusoidal model. The effects of spectral leakage, inherent in discrete Fourier transform operation when the modes present in the signal have a nonintegral number of wavelengths in the record, are included in the analysis. A single phase-coupled triad of modes can cause the bispectrum to have a nonzero mean value over the entire region of computation owing to leakage. The variance of bispectral estimates in the presence of leakage has contributions from individual modes and from triads of phase-coupled modes. Time-domain windowing reduces the leakage. The theoretical expressions for the mean and variance of bispectral estimates are derived in terms of a function dependent on an arbitrary symmetric time-domain window applied to the record. the number of data, and the statistics of the phase coupling among triads of modes. The theoretical results are verified by numerical simulations for simple test cases and applied to laboratory data to examine phase coupling in a hypothesis testing framework
Resumo:
The School of Electrical and Electronic Systems Engineering of Queensland University of Technology (like many other universities around the world) has recognised the importance of complementing the teaching of signal processing with computer based experiments. A laboratory has been developed to provide a "hands-on" approach to the teaching of signal processing techniques. The motivation for the development of this laboratory was the cliche "What I hear I remember but what I do I understand." The laboratory has been named as the "Signal Computing and Real-time DSP Laboratory" and provides practical training to approximately 150 final year undergraduate students each year. The paper describes the novel features of the laboratory, techniques used in the laboratory based teaching, interesting aspects of the experiments that have been developed and student evaluation of the teaching techniques
Resumo:
Background: Chronic disease presents overwhelming challenges to elderly patients, their families, health care providers and the health care system. The aim of this study was to explore a theoretical model for effective management of chronic diseases, especially type 2 diabetes mellitus and/or cardiovascular disease. The assumed theoretical model considered the connections between physical function, mental health, social support and health behaviours. The study effort was to improve the quality of life for people with chronic diseases, especially type 2 diabetes and/or cardiovascular disease and to reduce health costs. Methods: A cross-sectional post questionnaire survey was conducted in early 2009 from a randomised sample of Australians aged 50 to 80 years. A total of 732 subjects were eligible for analysis. Firstly, factors influencing respondents‘ quality of life were investigated through bivariate and multivariate regression analysis. Secondly, the Theory of Planned Behaviour (TPB) model for regular physical activity, healthy eating and medication adherence behaviours was tested for all relevant respondents using regression analysis. Thirdly, TPB variable differences between respondents who have diabetes and/or cardiovascular disease and those without these diseases were compared. Finally, the TPB model for three behaviours including regular physical activity, healthy eating and medication adherence were tested in respondents with diabetes and/or cardiovascular diseases using Structure Equation Modelling (SEM). Results: This was the first study combining the three behaviours using a TPB model, while testing the influence of extra variables on the TPB model in one study. The results of this study provided evidence that the ageing process was a cumulative effect of biological change, socio-economic environment and lifelong behaviours. Health behaviours, especially physical activity and healthy eating were important modifiable factors influencing respondents‘ quality of life. Since over 80% of the respondents had at least one chronic disease, it was important to consider supporting older people‘s chronic disease self-management skills such as healthy diet, regular physical activity and medication adherence to improve their quality of life. Direct measurement of the TPB model was helpful in understanding respondents‘ intention and behaviour toward physical activity, healthy eating and medication adherence. In respondents with diabetes and/or cardiovascular disease, the TPB model predicted different proportions of intention toward three different health behaviours with 39% intending to engage in physical activity, 49% intending to engage in healthy eating and 47% intending to comply with medication adherence. Perceived behavioural control, which was proven to be the same as self-efficacy in measurement in this study, played an important role in predicting intention towards the three health behaviours. Also social norms played a slightly more important role than attitude for physical activity and medication adherence, while attitude and social norms had similar effects on healthy eating in respondents with diabetes and/or cardiovascular disease. Both perceived behavioural control and intention directly predicted recent actual behaviours. Physical activity was more a volitional control behaviour than healthy eating and medication adherence. Step by step goal setting and motivation was more important for physical activity, while accessibility, resources and other social environmental factors were necessary for improving healthy eating and medication adherence. The extra variables of age, waist circumference, health related quality of life and depression indirectly influenced intention towards the three behaviours mainly mediated through attitude and perceived behavioural control. Depression was a serious health problem that reduced the three health behaviours‘ motivation, mediated through decreased self-efficacy and negative attitude. This research provided evidence that self-efficacy is similar to perceived behavioural control in the TPB model and intention is a proximal goal toward a particular behaviour. Combining four sources of information in the self-efficacy model with the TPB model would improve chronic disease patients‘ self management behaviour and reach an improved long-term treatment outcome. Conclusion: Health intervention programs that target chronic disease management should focus on patients‘ self-efficacy. A holistic approach which is patient-centred and involves a multidisciplinary collaboration strategy would be effective. Supporting the socio-economic environment and the mental/ emotional environment for older people needs to be considered within an integrated health care system.
Resumo:
In this paper, we seek to expand the use of direct methods in real-time applications by proposing a vision-based strategy for pose estimation of aerial vehicles. The vast majority of approaches make use of features to estimate motion. Conversely, the strategy we propose is based on a MR (Multi- Resolution) implementation of an image registration technique (Inverse Compositional Image Alignment ICIA) using direct methods. An on-board camera in a downwards-looking configuration, and the assumption of planar scenes, are the bases of the algorithm. The motion between frames (rotation and translation) is recovered by decomposing the frame-to-frame homography obtained by the ICIA algorithm applied to a patch that covers around the 80% of the image. When the visual estimation is required (e.g. GPS drop-out), this motion is integrated with the previous known estimation of the vehicles’ state, obtained from the on-board sensors (GPS/IMU), and the subsequent estimations are based only on the vision-based motion estimations. The proposed strategy is tested with real flight data in representative stages of a flight: cruise, landing, and take-off, being two of those stages considered critical: take-off and landing. The performance of the pose estimation strategy is analyzed by comparing it with the GPS/IMU estimations. Results show correlation between the visual estimation obtained with the MR-ICIA and the GPS/IMU data, that demonstrate that the visual estimation can be used to provide a good approximation of the vehicle’s state when it is required (e.g. GPS drop-outs). In terms of performance, the proposed strategy is able to maintain an estimation of the vehicle’s state for more than one minute, at real-time frame rates based, only on visual information.
Resumo:
Metallic materials exposed to oxygen-enriched atmospheres – as commonly used in the medical, aerospace, aviation and numerous chemical processing industries – represent a significant fire hazard which must be addressed during design, maintenance and operation. Hence, accurate knowledge of metallic materials flammability is required. Reduced gravity (i.e. space-based) operations present additional unique concerns, where the absence of gravity must also be taken into account. The flammability of metallic materials has historically been quantified using three standardised test methods developed by NASA, ASTM and ISO. These tests typically involve the forceful (promoted) ignition of a test sample (typically a 3.2 mm diameter cylindrical rod) in pressurised oxygen. A test sample is defined as flammable when it undergoes burning that is independent of the ignition process utilised. In the standardised tests, this is indicated by the propagation of burning further than a defined amount, or „burn criterion.. The burn criterion in use at the onset of this project was arbitrarily selected, and did not accurately reflect the length a sample must burn in order to be burning independent of the ignition event and, in some cases, required complete consumption of the test sample for a metallic material to be considered flammable. It has been demonstrated that a) a metallic material.s propensity to support burning is altered by any increase in test sample temperature greater than ~250-300 oC and b) promoted ignition causes an increase in temperature of the test sample in the region closest to the igniter, a region referred to as the Heat Affected Zone (HAZ). If a test sample continues to burn past the HAZ (where the HAZ is defined as the region of the test sample above the igniter that undergoes an increase in temperature of greater than or equal to 250 oC by the end of the ignition event), it is burning independent of the igniter, and should be considered flammable. The extent of the HAZ, therefore, can be used to justify the selection of the burn criterion. A two dimensional mathematical model was developed in order to predict the extent of the HAZ created in a standard test sample by a typical igniter. The model was validated against previous theoretical and experimental work performed in collaboration with NASA, and then used to predict the extent of the HAZ for different metallic materials in several configurations. The extent of HAZ predicted varied significantly, ranging from ~2-27 mm depending on the test sample thermal properties and test conditions (i.e. pressure). The magnitude of the HAZ was found to increase with increasing thermal diffusivity, and decreasing pressure (due to slower ignition times). Based upon the findings of this work, a new burn criterion requiring 30 mm of the test sample to be consumed (from the top of the ignition promoter) was recommended and validated. This new burn criterion was subsequently included in the latest revision of the ASTM G124 and NASA 6001B international test standards that are used to evaluate metallic material flammability in oxygen. These revisions also have the added benefit of enabling the conduct of reduced gravity metallic material flammability testing in strict accordance with the ASTM G124 standard, allowing measurement and comparison of the relative flammability (i.e. Lowest Burn Pressure (LBP), Highest No-Burn Pressure (HNBP) and average Regression Rate of the Melting Interface(RRMI)) of metallic materials in normal and reduced gravity, as well as determination of the applicability of normal gravity test results to reduced gravity use environments. This is important, as currently most space-based applications will typically use normal gravity information in order to qualify systems and/or components for reduced gravity use. This is shown here to be non-conservative for metallic materials which are more flammable in reduced gravity. The flammability of two metallic materials, Inconel® 718 and 316 stainless steel (both commonly used to manufacture components for oxygen service in both terrestrial and space-based systems) was evaluated in normal and reduced gravity using the new ASTM G124-10 test standard. This allowed direct comparison of the flammability of the two metallic materials in normal gravity and reduced gravity respectively. The results of this work clearly show, for the first time, that metallic materials are more flammable in reduced gravity than in normal gravity when testing is conducted as described in the ASTM G124-10 test standard. This was shown to be the case in terms of both higher regression rates (i.e. faster consumption of the test sample – fuel), and burning at lower pressures in reduced gravity. Specifically, it was found that the LBP for 3.2 mm diameter Inconel® 718 and 316 stainless steel test samples decreased by 50% from 3.45 MPa (500 psia) in normal gravity to 1.72 MPa (250 psia) in reduced gravity for the Inconel® 718, and 25% from 3.45 MPa (500 psia) in normal gravity to 2.76 MPa (400 psia) in reduced gravity for the 316 stainless steel. The average RRMI increased by factors of 2.2 (27.2 mm/s in 2.24 MPa (325 psia) oxygen in reduced gravity compared to 12.8 mm/s in 4.48 MPa (650 psia) oxygen in normal gravity) for the Inconel® 718 and 1.6 (15.0 mm/s in 2.76 MPa (400 psia) oxygen in reduced gravity compared to 9.5 mm/s in 5.17 MPa (750 psia) oxygen in normal gravity) for the 316 stainless steel. Reasons for the increased flammability of metallic materials in reduced gravity compared to normal gravity are discussed, based upon the observations made during reduced gravity testing and previous work. Finally, the implications (for fire safety and engineering applications) of these results are presented and discussed, in particular, examining methods for mitigating the risk of a fire in reduced gravity.
Resumo:
This paper describes the vulnerability of masonry under shear; first the mechanisms of in-plane and out-of-plane shear performance of masonry are reviewed; both the unreinforced and lightly reinforced masonry wall systems are considered. Factors affecting the response of unreinforced and reinforced masonry to shear are described and the effect of the variability of those factors to the failure mode of masonry shear walls is also discussed. Some critique is provided on the existing design provisions in various masonry standards.
Resumo:
Many ageing road bridges, particularly timber bridges, require urgent improvement due to the demand imposed by the recent version of the Australian bridge loading code, AS 5100. As traffic volume plays a key role in the decision of budget allocations for bridge refurbishment/ replacement, many bridges in low volume traffic network remain in poor condition with axle load and/ or speed restrictions, thus disadvantaging many rural communities. This thesis examines an economical and environmentally sensible option of incorporating disused flat rail wagons (FRW) in the construction of bridges in low volume, high axle load road network. The constructability, economy and structural adequacy of the FRW road bridge is reported in the thesis with particular focus of a demonstration bridge commissioned in regional Queensland. The demonstration bridge comprises of a reinforced concrete slab (RCS) pavement resting on two FRWs with custom designed connection brackets at regular intervals along the span of the bridge. The FRW-RC bridge deck assembly is supported on elastomeric rubber pads resting on the abutment. As this type of bridge replacement technology is new and its structural design is not covered in the design standards, the in-service structural performance of the FRW bridge subjected to the high axle loadings prescribed in AS 5100 is examined through performance load testing. Both the static and the moving load tests are carried out using a fully laden commonly available three-axle tandem truck. The bridge deck is extensively strain gauged and displacement at several key locations is measured using linear variable displacement transducers (LVDTs). A high speed camera is used in the performance test and the digital image data are analysed using proprietary software to capture the locations of the wheel positions on the bridge span accurately. The wheel location is thus synchronised with the displacement and strain time series to infer the structural response of the FRW bridge. Field test data are used to calibrate a grillage model, developed for further analysis of the FRW bridge to various sets of high axle loads stipulated in the bridge design standard. Bridge behaviour predicted by the grillage model has exemplified that the live load stresses of the FRW bridge is significantly lower than the yield strength of steel and the deflections are well below the serviceability limit state set out in AS 5100. Based on the results reported in this thesis, it is concluded that the disused FRWs are competent to resist high axle loading prescribed in AS 5100 and are a viable alternative structural solution of bridge deck in the context of the low volume road networks.
Resumo:
Errata supplement to QUT thesis: 'Heavy vehicle suspensions : testing and analysis'
Resumo:
In natural estuaries, scalar diffusion and dispersion are driven by turbulence. In the present study, detailed turbulence measurements were conducted in a small subtropical estuary with semi-diurnal tides under neap tide conditions. Three acoustic Doppler velocimeters were installed mid-estuary at fixed locations close together. The units were sampled simultaneously and continuously at relatively high frequency for 50 h. The results illustrated the influence of tidal forcing in the small estuary, although low frequency longitudinal velocity oscillations were observed and believed to be induced by external resonance. The boundary shear stress data implied that the turbulent shear in the lower flow region was one order of magnitude larger than the boundary shear itself. The observation differed from turbulence data in a laboratory channel, but a key feature of natural estuary flow was the significant three dimensional effects associated with strong secondary currents including transverse shear events. The velocity covariances and triple correlations, as well as the backscatter intensity and covariances, were calculated for the entire field study. The covariances of the longitudinal velocity component showed some tidal trend, while the covariances of the transverse horizontal velocity component exhibited trends that reflected changes in secondary current patterns between ebb and flood tides. The triple correlation data tended to show some differences between ebb and flood tides. The acoustic backscatter intensity data were characterised by large fluctuations during the entire study, with dimensionless fluctuation intensity I0b =Ib between 0.46 and 0.54. An unusual feature of the field study was some moderate rainfall prior to and during the first part of the sampling period. Visual observations showed some surface scars and marked channels, while some mini transient fronts were observed.
Resumo:
Humankind has been dealing with all kinds of disasters since the dawn of time. The risk and impact of disasters producing mass casualties worldwide is increasing, due partly to global warming as well as to increased population growth, increased density and the aging population. China, as a country with a large population, vast territory, and complex climatic and geographical conditions, has been plagued by all kinds of disasters. Disaster health management has traditionally been a relatively arcane discipline within public health. However, SARS, Avian Influenza, and earthquakes and floods, along with the need to be better prepared for the Olympic Games in China has brought disasters, their management and their potential for large scale health consequences on populations to the attention of the public, the government and the international community alike. As a result significant improvements were made to the disaster management policy framework, as well as changes to systems and structures to incorporate an improved disaster management focus. This involved the upgrade of the Centres for Disease Control and Prevention (CDC) throughout China to monitor and better control the health consequences particularly of infectious disease outbreaks. However, as can be seen in the Southern China Snow Storm and Wenchuan Earthquake in 2008, there remains a lack of integrated disaster management and efficient medical rescue, which has been costly in terms of economics and health for China. In the context of a very large and complex country, there is a need to better understand whether these changes have resulted in effective management of the health impacts of such incidents. To date, the health consequences of disasters, particularly in China, have not been a major focus of study. The main aim of this study is to analyse and evaluate disaster health management policy in China and in particular, its ability to effectively manage the health consequences of disasters. Flood has been selected for this study as it is a common and significant disaster type in China and throughout the world. This information will then be used to guide conceptual understanding of the health consequences of floods. A secondary aim of the study is to compare disaster health management in China and Australia as these countries differ in their length of experience in having a formalised policy response. The final aim of the study is to determine the extent to which Walt and Gilson’s (1994) model of policy explains how disaster management policy in China was developed and implemented after SARS in 2003 to the present day. This study has utilised a case study methodology. A document analysis and literature search of Chinese and English sources was undertaken to analyse and produce a chronology of disaster health management policy in China. Additionally, three detailed case studies of flood health management in China were undertaken along with three case studies in Australia in order to examine the policy response and any health consequences stemming from the floods. A total of 30 key international disaster health management experts were surveyed to identify fundamental elements and principles of a successful policy framework for disaster health management. Key policy ingredients were identified from the literature, the case-studies and the survey of experts. Walt and Gilson (1994)’s policy model that focuses on the actors, content, context and process of policy was found to be a useful model for analysing disaster health management policy development and implementation in China. This thesis is divided into four parts. Part 1 is a brief overview of the issues and context to set the scene. Part 2 examines the conceptual and operational context including the international literature, government documents and the operational environment for disaster health management in China. Part 3 examines primary sources of information to inform the analysis. This involves two key studies: • A comparative analysis of the management of floods in China and Australia • A survey of international experts in the field of disaster management so as to inform the evaluation of the policy framework in existence in China and the criteria upon which the expression of that policy could be evaluated Part 4 describes the key outcomes of this research which include: • A conceptual framework for describing the health consequences of floods • A conceptual framework for disaster health management • An evaluation of the disaster health management policy and its implementation in China. The research outcomes clearly identified that the most significant improvements are to be derived from improvements in the generic management of disasters, rather than the health aspects alone. Thus, the key findings and recommendations tend to focus on generic issues. The key findings of this research include the following: • The health consequences of floods may be described in terms of time as ‘immediate’, ‘medium term’ and ‘long term’ and also in relation to causation as ‘direct’ and ‘indirect’ consequences of the flood. These two aspects form a matrix which in turn guides management responses. • Disaster health management in China requires a more comprehensive response throughout the cycle of prevention, preparedness, response and recovery but it also requires a more concentrated effort on policy implementation to ensure the translation of the policy framework into effective incident management. • The policy framework in China is largely of international standard with a sound legislative base. In addition the development of the Centres for Disease Control and Prevention has provided the basis for a systematic approach to health consequence management. However, the key weaknesses in the current system include: o The lack of a key central structure to provide the infrastructure with vital support for policy development, implementation and evaluation. o The lack of well-prepared local response teams similar to local government based volunteer groups in Australia. • The system lacks structures to coordinate government action at the local level. The result of this is a poorly coordinated local response and lack of clarity regarding the point at which escalation of the response to higher levels of government is advisable. These result in higher levels of risk and negative health impacts. The key recommendations arising from this study are: 1. Disaster health management policy in China should be enhanced by incorporating disaster management considerations into policy development, and by requiring a disaster management risk analysis and disaster management impact statement for development proposals. 2. China should transform existing organizations to establish a central organisation similar to the Federal Emergency Management Agency (FEMA) in the USA or the Emergency Management Australia (EMA) in Australia. This organization would be responsible for leading nationwide preparedness through planning, standards development, education and incident evaluation and to provide operational support to the national and local government bodies in the event of a major incident. 3. China should review national and local plans to reflect consistency in planning, and to emphasize the advantages of the integrated planning process. 4. Enhance community resilience through community education and the development of a local volunteer organization. China should develop a national strategy which sets direction and standards in regard to education and training, and requires system testing through exercises. Other initiatives may include the development of a local volunteer capability with appropriate training to assist professional response agencies such as police and fire services in a major incident. An existing organisation such as the Communist Party may be an appropriate structure to provide this response in a cost effective manner. 5. Continue development of professional emergency services, particularly ambulance, to ensure an effective infrastructure is in place to support the emergency response in disasters. 6. Funding for disaster health management should be enhanced, not only from government, but also from other sources such as donations and insurance. It is necessary to provide a more transparent mechanism to ensure the funding is disseminated according to the needs of the people affected. 7. Emphasis should be placed on prevention and preparedness, especially on effective disaster warnings. 8. China should develop local disaster health management infrastructure utilising existing resources wherever possible. Strategies for enhancing local infrastructure could include the identification of local resources (including military resources) which could be made available to support disaster responses. It should develop operational procedures to access those resources. Implementation of these recommendations should better position China to reduce the significant health consequences experienced each year from major incidents such as floods and to provide an increased level of confidence to the community about the country’s capacity to manage such events.
Resumo:
Iron (Fe) is the fourth most abundant element in the Earth’s crust. Excess Fe mobilization from terrestrial into aquatic systems is of concern for deterioration of water quality via biofouling and nuisance algal blooms in coastal and marine systems. Substantial Fe dissolution and transport involve alternate Fe(II) oxidation followed by Fe(III) reduction, with a diversity of Bacteria and Archaea acting as the key catalyst. Microbially-mediated Fe cycling is of global significance with regard to cycles of carbon (C), sulfur (S) and manganese (Mn). However, knowledge regarding microbial Fe cycling in circumneutral-pH habitats that prevail on Earth has been lacking until recently. In particular, little is known regarding microbial function in Fe cycling and associated Fe mobilization and greenhouse (CO2 and CH4, GHG) evolution in subtropical Australian coastal systems where microbial response to ambient variations such as seasonal flooding and land use changes is of concern. Using the plantation-forested Poona Creek catchment on the Fraser Coast of Southeast Queensland (SEQ), this research aimed to 1) study Fe cycling-associated bacterial populations in diverse terrestrial and aquatic habitats of a representative subtropical coastal circumneutral-pH (4–7) ecosystem; and 2) assess potential impacts of Pinus plantation forestry practices on microbially-mediated Fe mobilization, organic C mineralization and associated GHG evolution in coastal SEQ. A combination of wet-chemical extraction, undisturbed core microcosm, laboratory bacterial cultivation, microscopy and 16S rRNA-based molecular phylogenetic techniques were employed. The study area consisted primarily of loamy sands, with low organic C and dissolved nutrients. Total reactive Fe was abundant and evenly distributed within soil 0–30 cm profiles. Organic complexation primarily controlled Fe bioavailability and forms in well-drained plantation soils and water-logged, native riparian soils, whereas tidal flushing exerted a strong “seawater effect” in estuarine locations and formed a large proportion of inorganic Fe(III) complexes. There was a lack of Fe(II) sources across the catchment terrestrial system. Mature, first-rotation plantation clear-felling and second-rotation replanting significantly decreased organic matter and poorly crystalline Fe in well-drained soils, although variations in labile soil organic C fractions (dissolved organic C, DOC; and microbial biomass C, MBC) were minor. Both well-drained plantation soils and water-logged, native-vegetation soils were inhabited by a variety of cultivable, chemotrophic bacterial populations capable of C, Fe, S and Mn metabolism via lithotrophic or heterotrophic, (micro)aerobic or anaerobic pathways. Neutrophilic Fe(III)-reducing bacteria (FeRB) were most abundant, followed by aerobic, heterotrophic bacteria (heterotrophic plate count, HPC). Despite an abundance of FeRB, cultivable Fe(II)-oxidizing bacteria (FeOB) were absent in associated soils. A lack of links between cultivable Fe, S or Mn bacterial densities and relevant chemical measurements (except for HPC correlated with DOC) was likely due to complex biogeochemical interactions. Neither did variations in cultivable bacterial densities correlate with plantation forestry practices, despite total cultivable bacterial densities being significantly lower in estuarine soils when compared with well-drained plantation soils and water-logged, riparian native-vegetation soils. Given that bacterial Fe(III) reduction is the primary mechanism of Fe oxide dissolution in soils upon saturation, associated Fe mobilization involved several abiotic and biological processes. Abiotic oxidation of dissolved Fe(II) by Mn appeared to control Fe transport and inhibit Fe dissolution from mature, first-rotation plantation soils post-saturation. Such an effect was not observed in clear-felled and replanted soils associated with low SOM and potentially low Mn reactivity. Associated GHG evolution post-saturation mainly involved variable CO2 emissions, with low, but consistently increasing CH4 effluxes in mature, first-rotation plantation soil only. In comparison, water-logged soils in the riparian native-vegetation buffer zone functioned as an important GHG source, with high potentials for Fe mobilization and GHG, particularly CH4 emissions in riparian loam soils associated with high clay and crystalline Fe fractions. Active Fe–C cycling was unlikely to occur in lower-catchment estuarine soils associated with low cultivable bacterial densities and GHG effluxes. As a key component of bacterial Fe cycling, neutrophilic FeOB widely occurred in diverse aquatic, but not terrestrial, habitats of the catchment study area. Stalked and sheathed FeOB resembling Gallionella and Leptothrix were limited to microbial mat material deposited in surface fresh waters associated with a circumneutral-pH seep, and clay-rich soil within riparian buffer zones. Unicellular, Sideroxydans-related FeOB (96% sequence identity) were ubiquitous in surface and subsurface freshwater environments, with highest abundance in estuary-adjacent shallow coastal groundwater water associated with redox transition. The abundance of dissolved C and Fe in the groundwater-dependent system was associated with high numbers of cultivable anaerobic, heterotrophic FeRB, microaerophilic, putatively lithotrophic FeOB and aerobic, heterotrophic bacteria. This research represents the first study of microbial Fe cycling in diverse circumneutral-pH environments (terrestrial–aquatic, freshwater–estuarine, surface–subsurface) of a subtropical coastal ecosystem. It also represents the first study of its kind in the southern hemisphere. This work highlights the significance of bacterial Fe(III) reduction in terrestrial, and bacterial Fe(II) oxidation in aquatic catchment Fe cycling. Results indicate the risk of promotion of Fe mobilization due to plantation clear-felling and replanting, and GHG emissions associated with seasonal water-logging. Additional significant outcomes were also achieved. The first direct evidence for multiple biomineralization patterns of neutrophilic, microaerophilic, unicellular FeOB was presented. A putatively pure culture, which represents the first cultivable neutrophilic FeOB from the southern hemisphere, was obtained as representative FeOB ubiquitous in diverse catchment aquatic habitats.