249 resultados para DISPLACEMENT PILE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research on 1vs1 sub-phases in team sports has shown how one player coordinates his/her actions with his/her opponent and the location of a target/goal to attain performance objectives. In this study, we extended this approach to analysis of 5vs5 competitive performance in the team sport of futsal to provide a performance analysis framework that explains how players coordinate their actions to create/prevent opportunities to score goals. For this purpose, we recorded all 10 futsal matches of the 2009 Lusophony Games held in Lisbon. We analysed the displacement trajectories of a shooting attacker and marking defender in plays ending in a goal, a goalkeeper's save, and a defender's interception, at four specific moments during performance: (1) assisting attacker's ball reception; (2) moment of passing; (3) shooter's ball reception, and; (4) shot on goal. Statistical analysis showed that when a goal was scored, the defender's angle to the goal and to the attacker tended to decrease, the attacker was able to move to the same distance to the goal alongside the defender, and the attacker was closer to the defender and moving at the same velocity (at least) as the defender. This study identified emergent patterns of coordination between attackers and defenders under key competitive task constraints, such as the location of the goal, which supported successful performance in futsal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Little evidence is available about the association between temperature and cerebrovascular mortality in China. This study aims to examine the effects of ambient temperature on cerebrovascular mortality in different climatic zones in China. Method We obtained daily data on weather conditions, air pollution and cerebrovascular deaths from five cities (Beijing, Tianjin, Shanghai, Wuhan, and Guangzhou) in China during 2004-2008. We examined city-specific associations between ambient temperature and the cerebrovascular mortality, while adjusting for season, long-term trends, day of the week, relative humidity and air pollution. We examined cold effects using a 1°C decrease in temperature below a city-specific threshold, and hot effects using a 1°C increase in temperature above a city-specific threshold. We used a meta-analysis to summarize the cold and hot effects across the five cities. Results Beijing and Tianjin (with low mean temperature) had lower thresholds than Shanghai, Wuhan and Guangzhou (with high mean temperature). In Beijing, Tianjin, Wuhan and Guangzhou cold effects were delayed, while in Shanghai there was no or short induction. Hot effects were acute in all five cities. The cold effects lasted longer than hot effects. The hot effects were followed by mortality displacement. The pooled relative risk associated with a 1°C decrease in temperature below thresholds (cold effect) was 1.037 (95% confidence interval (CI): 1.020, 1.053). The pooled relative risk associated with a 1°C increase in temperature above thresholds (hot effect) was 1.014 (95% CI: 0.979, 1.050). Conclusion Cold temperatures are significantly associated with cerebrovascular mortality in China, while hot effect is not significant. People in colder climate cities were sensitive to hot temperatures, while people in warmer climate cities were vulnerable to cold temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cities and urban spaces around the world are changing rapidly from their origins in the industrialising world to a post-industrial, hard wired surveillance landscape. This kind of monitoring and surveillance connects with attempts by civic authorities to rebrand urban public spaces into governable and predictable arenas of consumption. In this context of control, a number of groups are excluded from public space, such as some children and young people. This article discusses the surveillance, governance and control of public space environments used by children and young people in particular, and the capacity for their ongoing displacement and marginality, as well as possible greater inclusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The richness of the iris texture and its variability across individuals make it a useful biometric trait for personal authentication. One of the key stages in classical iris recognition is the normalization process, where the annular iris region is mapped to a dimensionless pseudo-polar coordinate system. This process results in a rectangular structure that can be used to compensate for differences in scale and variations in pupil size. Most iris recognition methods in the literature adopt linear sampling in the radial and angular directions when performing iris normalization. In this paper, a biomechanical model of the iris is used to define a novel nonlinear normalization scheme that improves iris recognition accuracy under different degrees of pupil dilation. The proposed biomechanical model is used to predict the radial displacement of any point in the iris at a given dilation level, and this information is incorporated in the normalization process. Experimental results on the WVU pupil light reflex database (WVU-PLR) indicate the efficacy of the proposed technique, especially when matching iris images with large differences in pupil size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ankylosing spondylitis (AS) is a common and highly familial rheumatic disorder. The sibling recurrence risk ratio for the disease is 63 and heritability assessed in twins > 90%. Although MHC genes, including HLA-B27, contribute only 20-50% of the genetic risk for the disease, no non-MHC gene has yet been convincingly demonstrated to influence either susceptibility to the disease or its phenotypic expression. Previous linkage and association studies have suggested the presence of a susceptibility gene for AS close to, or within, the cytochrome P450 2D6 gene (CYP2D6, debrisoquine hydroxylase) located at chromosome 22q13.1. We performed a linkage study of chromosome 22 in 200 families with AS affected sibling-pairs. Association of alleles of the CYP2D6 gene was examined by both case-control and within-family means. For case-control studies, 617 unrelated individuals with AS (361 probands from sibling-pair and parent-case trio families and 256 unrelated non-familial sporadic cases) and 402 healthy ethnically matched controls were employed. For within-family association studies, 361 families including 161 parent-case trios and 200 affected sibling-pair families were employed. Homozygosity for poor metabolizer alleles was found to be associated with AS. Heterozygosity for the most frequent poor metabolizer allele (CYP2D6*4) was not associated with increased susceptibility to AS. Significant within-family association of CYP2D6*4 alleles and AS was demonstrated. Weak linkage was also demonstrated between CYP2D6 and AS. We postulate that altered metabolism of a natural toxin or antigen by the CYP2D6 gene may increase susceptibility to AS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fire resistance of load bearing Light Gauge Steel Frame (LSF) wall systems is important to protect lives and properties in fire accidents. Recent fire tests of LSF walls made of the new cold-formed and welded hollow flange channel (HFC) section studs and the commonly used lipped channel section (LCS) studs have shown the influence of stud sections on the fire resistance rating (FRR) of LSF walls. To advance the use of HFC section studs and to verify the outcomes from the fire tests, finite element models were developed to predict the structural fire performance of LSF walls made of welded HFC section studs. The developed models incorporated the measured non-uniform temperature distributions in LSF wall studs due to the exposure of standard fire on one side, and accurate elevated temperature mechanical properties of steel used in the stud sections. These models simulated the various complexities involved such as thermal bowing and neutral axis shift caused by the non-uniform temperature distribution in the studs. The finite element analysis (FEA) results agreed well with the full scale fire test results including the FRR, outer hot and cold flange temperatures at failure and axial deformation and lateral displacement profiles. They also confirmed the superior fire performance of LSF walls made of HFC section studs. The applicability of both transient and steady state FEA of LSF walls under fire conditions was verified in this study, which also investigated the effects of using various temperature distribution patterns across the cross-section of HFC section studs on the FRR of LSF walls. This paper presents the details of this numerical study and the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel three-dimensional hybrid smoothed finite element method (H-SFEM) for solid mechanics problems. In 3D H-SFEM, the strain field is assumed to be the weighted average between compatible strains from the finite element method (FEM) and smoothed strains from the node-based smoothed FEM with a parameter α equipped into H-SFEM. By adjusting α, the upper and lower bound solutions in the strain energy norm and eigenfrequencies can always be obtained. The optimized α value in 3D H-SFEM using a tetrahedron mesh possesses a close-to-exact stiffness of the continuous system, and produces ultra-accurate solutions in terms of displacement, strain energy and eigenfrequencies in the linear and nonlinear problems. The novel domain-based selective scheme is proposed leading to a combined selective H-SFEM model that is immune from volumetric locking and hence works well for nearly incompressible materials. The proposed 3D H-SFEM is an innovative and unique numerical method with its distinct features, which has great potential in the successful application for solid mechanics problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Different from other indicators of cardiac function, such as ejection fraction and transmitral early diastolic velocity, myocardial strain is promising to capture subtle alterations that result from early diseases of the myocardium. In order to extract the left ventricle (LV) myocardial strain and strain rate from cardiac cine-MRI, a modified hierarchical transformation model was proposed. Methods A hierarchical transformation model including the global and local LV deformations was employed to analyze the strain and strain rate of the left ventricle by cine-MRI image registration. The endocardial and epicardial contour information was introduced to enhance the registration accuracy by combining the original hierarchical algorithm with an Iterative Closest Points using Invariant Features algorithm. The hierarchical model was validated by a normal volunteer first and then applied to two clinical cases (i.e., the normal volunteer and a diabetic patient) to evaluate their respective function. Results Based on the two clinical cases, by comparing the displacement fields of two selected landmarks in the normal volunteer, the proposed method showed a better performance than the original or unmodified model. Meanwhile, the comparison of the radial strain between the volunteer and patient demonstrated their apparent functional difference. Conclusions The present method could be used to estimate the LV myocardial strain and strain rate during a cardiac cycle and thus to quantify the analysis of the LV motion function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To compare the differences in the hemodynamic parameters of abdominal aortic aneurysm (AAA) between fluid-structure interaction model (FSIM) and fluid-only model (FM), so as to discuss their application in the research of AAA. Methods: An idealized AAA model was created based on patient-specific AAA data. In FM, the flow, pressure and wall shear stress (WSS) were computed using finite volume method. In FSIM, an Arbitrary Lagrangian-Eulerian algorithm was used to solve the flow in a continuously deforming geometry. The hemodynamic parameters of both models were obtained for discussion. Results: Under the same inlet velocity, there were only two symmetrical vortexes in the AAA dilation area for FSIM. In contrast, four recirculation areas existed in FM; two were main vortexes and the other two were secondary flow, which were located between the main recirculation area and the arterial wall. Six local pressure concentrations occurred in the distal end of AAA and the recirculation area for FM. However, there were only two local pressure concentrations in FSIM. The vortex center of the recirculation area in FSIM was much more close to the distal end of AAA and the area was much larger because of AAA expansion. Four extreme values of WSS existed at the proximal of AAA, the point of boundary layer separation, the point of flow reattachment and the distal end of AAA, respectively, in both FM and FSIM. The maximum wall stress and the largest wall deformation were both located at the proximal and distal end of AAA. Conclusions: The number and center of the recirculation area for both models are different, while the change of vortex is closely associated with the AAA growth. The largest WSS of FSIM is 36% smaller than that of FM. Both the maximum wall stress and largest wall displacement shall increase with the outlet pressure increasing. FSIM needs to be considered for studying the relationship between AAA growth and shear stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Despite being the stiffest airway of the bronchial tree, the trachea undergoes significant deformation due to intrathoracic pressure during breathing. The mechanical properties of the trachea affect the flow in the airway and may contribute to the biological function of the lung. Method: A Fung-type strain energy density function was used to investigate the nonlinear mechanical behavior of tracheal cartilage. A bending test on pig tracheal cartilage was performed and a mathematical model for analyzing the deformation of tracheal cartilage was developed. The constants included in the strain energy density function were determined by fitting the experimental data. Result: The experimental data show that tracheal cartilage is a nonlinear material displaying higher strength in compression than in tension. When the compression forces varied from -0.02 to -0.03 N and from -0.03 to -0.04 N, the deformation ratios were 11.03±2.18% and 7.27±1.59%, respectively. Both were much smaller than the deformation ratios (20.01±4.49%) under tension forces of 0.02 to 0.01 N. The Fung-type strain energy density function can capture this nonlinear behavior very well, whilst the linear stress-strain relation cannot. It underestimates the stability of trachea by exaggerating the displacement in compression. This study may improve our understanding of the nonlinear behavior of tracheal cartilage and it may be useful for the future study on tracheal collapse behavior under physiological and pathological conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation to characterize the causes of Pinna nobilis population structure in Moraira bay (Western Mediterranean) was developed. Individuals of two areas of the same Posidonia meadow, located at different depths (A1, -13 and A2, -6 m), were inventoried, tagged, their positions accurately recorded and monitored from July 1997 to July 2002. On each area, different aspects of population demography were studied (i.e. spatial distribution, size structure, displacement evidences, mortality, growth and shell orientation). A comparison between both groups of individuals was carried out, finding important differences between them. In A1, the individuals were more aggregated and mean and maximum size were higher (A1, 10.3 and A2, 6 individuals/100 m(2); A1, x = 47.2 +/- 9.9; A2, x = 29.8 +/- 7.4 cm, P < 0.001, respectively). In A2, growth rate and mortality were higher, the latter concentrated on the largest individuals, in contrast to A1, where the smallest individuals had the higher mortality rate [A1, L = 56.03(1 - e(-0.17t)); A2, L = 37.59(1 - e(-0.40t)), P < 0.001; mean annual mortality A1: 32 dead individuals out of 135, 23.7% and A2: 16 dead individuals out of 36, 44.4%, and total mortality coefficients (z), z(A1(-30)) = 0.28, z(A1(31-45)) = 0.05, z(A1(46-)) = 0.08; z(A2(-30)) = 0.15, z(A2(31-45)) = 0.25]. A common shell orientation N-S, coincident with the maximum shore exposure, was observed in A2. Spatial distribution in both areas showed not enough evidence to discard a random distribution of the individuals, despite the greater aggregation on the deeper area (A1) (A1, chi(2) = 0.41, df = 3, P > 0.5, A2, chi(2)= 0.98, df = 2 and 0.3 < P < 0.5). The obtained results have demonstrated that the depth-related size segregation usually shown by P. nobilis is mainly caused by differences in mortality and growth among individuals located at different depths, rather than by the active displacement of individuals previously reported in the literature. Furthermore, dwarf individuals are observed in shallower levels and as a consequence, the relationship between size and age are not comparable even among groups of individuals inhabiting the same meadow at different depths. The final causes of the differences on mortality and growth are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In open-cut strip mining, waste material is placed in-pit to minimise operational mine costs. Slope failures in these spoil piles pose a significant safety risk to personnel, along with a financial risk from loss of equipment and scheduling delays. It has been observed that most spoil pile failures occur when the pit has been previously filled with water and then subsequently dewatered. The failures are often initiated at the base of spoil piles where the material can undergo significant slaking (disintegration) over time due to overburden pressure and water saturation. It is important to understand how the mechanical properties of base spoil material are affected by slaking when designing safe spoil pile slope angles, heights, and dewatering rates. In this study, fresh spoil material collected from a coal mine in Brown Basin Coalfield of Queensland, Australia was subjected to high overburden pressure (0 – 900 kPa) under saturated condition and maintained over a period of time (0 – 6 months) allowing the material to slake. To create the above conditions, laboratory designed pressure chambers were used. Once a spoil sample was slaked under certain overburden pressure over a period of time, it was tested for classification, permeability, and strength properties. Results of this testing program suggested that the slaking of saturated coal mine spoil increase with overburden pressure and the time duration over which the overburden pressure was maintained. Further, it was observed that shear strength and permeability of spoil decreased with increase in spoil slaking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project was an initiation to investigate slaking induced properties detrition of spoil pile materials with overburden pressure and time. The changes in the material properties over time are important parameters that control the behaviour and performance of the piles. The time dependent mechanical and hydraulic properties reported together with mineralogical changes. One chamber designed to apply slaking in the laboratory and geotechnical investigation conducted to fulfil the objective of this project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A modified conventional direct shear device was used to measure unsaturated shear strength of two silty soils at low suction values (0 ~ 50 kPa) that were achieved by following drying and wetting paths of soil water characteristic curves (SWCCs). The results revealed that the internal friction angle of the soils was not significantly affected by either the suction or the drying wetting SWCCs. The apparent cohesion of soil increased with a decreasing rate as suction increased. Shear stress-shear displacement curves obtained from soil specimens subjected to the same net normal stress and different suction values showed a higher initial stiffness and a greater peak stress as suction increased. A soil in wetting exhibited slightly higher peak shear stress and more contractive volume change behavior than that of soil in drying at the same net normal stress and suction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Movement of tephritid flies underpins their survival, reproduction, and ability to establish in new areas and is thus of importance when designing effective management strategies. Much of the knowledge currently available on tephritid movement throughout landscapes comes from the use of direct or indirect methods that rely on the trapping of individuals. Here, we review published experimental designs and methods from mark-release-recapture (MRR) studies, as well as other methods, that have been used to estimate movement of the four major tephritid pest genera (Bactrocera, Ceratitis, Anastrepha, and Rhagoletis). In doing so, we aim to illustrate the theoretical and practical considerations needed to study tephritid movement. MRR studies make use of traps to directly estimate the distance that tephritid species can move within a generation and to evaluate the ecological and physiological factors that influence dispersal patterns. MRR studies, however, require careful planning to ensure that the results obtained are not biased by the methods employed, including marking methods, trap properties, trap spacing, and spatial extent of the trapping array. Despite these obstacles, MRR remains a powerful tool for determining tephritid movement, with data particularly required for understudied species that affect developing countries. To ensure that future MRR studies are successful, we suggest that site selection be carefully considered and sufficient resources be allocated to achieve optimal spacing and placement of traps in line with the stated aims of each study. An alternative to MRR is to make use of indirect methods for determining movement, or more correctly, gene flow, which have become widely available with the development of molecular tools. Key to these methods is the trapping and sequencing of a suitable number of individuals to represent the genetic diversity of the sampled population and investigate population structuring using nuclear genomic markers or non-recombinant mitochondrial DNA markers. Microsatellites are currently the preferred marker for detecting recent population displacement and provide genetic information that may be used in assignment tests for the direct determination of contemporary movement. Neither MRR nor molecular methods, however, are able to monitor fine-scale movements of individual flies. Recent developments in the miniaturization of electronics offer the tantalising possibility to track individual movements of insects using harmonic radar. Computer vision and radio frequency identification tags may also permit the tracking of fine-scale movements by tephritid flies by automated resampling, although these methods come with the same problems as traditional traps used in MRR studies. Although all methods described in this chapter have limitations, a better understanding of tephritid movement far outweighs the drawbacks of the individual methods because of the need for this information to manage tephritid populations.