534 resultados para Curriculum subject
Resumo:
While asking students to think reflectively is a desirable teaching goal, it is often fraught with complexity and sometimes poorly implemented in higher education. Here we describe an approach to academic reflective practice that fitted well within an existing design subject in fashion education and was perceived as effective in enhancing student learning outcomes. In many design based disciplines it is essential to evaluate, through a reflective lens, the quality of tangible design outcomes - referred to as artefacts in this case. Fashion studio based practice (unlike many other theory based disciplines) requires an artefact to be viewed, in order to initiate the reflective process. This reflection is not solely limited to reflective writing - the reflection happens through sight, touch and other non traditional approaches. Fashion students were asked to reflect before, during and after the development of an artefact and through a variety of media a review of the first garment prototype, called 'Sample Review', occurred. This teaching approach has been formalised as a "pedagogic pattern" in order to abstract successful experience for re use by other university teachers in different contexts. This case study fits within the broader project outlined in Paper 1. In this presentation we explore some of the complexities associated with teaching academic reflection along with the value in representing successful practices as pedagogical patterns. The teaching practice and student outcomes associated with the case study will be described. Finally, we shall argue that the pedagogical pattern, called 'Reflection Around Artefacts', can be applied in diverse discipline areas, and especially where students are engaged and reflecting on the design of an artefact(such as an assignment that includes the making of a professionally-relevant product).
Resumo:
This chapter will first consider the rationale for a transition pedagogy for first and final year law students. It then discusses the elements of a transition pedagogy for both years, noting the synergies and differences between programs designed to assist transition into and out of a law degree. In doing so, the authors attempt to explore the extent to which the first year curriculum principles identified by Sally Kift under an Australian Learning and Teaching Council (ALTC) Senior Fellowship may also be applied to the final year university experience. During the course of the discussion, examples are drawn from universities and Law Schools in Australia and internationally which seek to address these imperatives...
Resumo:
In an era of normative standardised literacy curriculum continuing to make space for culturally responsive literacy pedagogy is on ongoing challenge for early childhood educators. Collaborative participatory research and ethnographic studies of teachers who accomplish innovative and inclusive early childhood education in culturally diverse high poverty communities is urgent for the profession. Such pedagogies involve complex understandings of the cultural and political histories, and the dynamic potential, of the places in which school communities are located. By incorporating the study of local histories and biographies and researching neighbourhood changes teachers adapt mandated curriculum to maintain community knowledges and allow for positive identity work at the same time as they meet the authorised systems objectives. When teachers work with children as co-researchers through the study of people's lives in particular places and times, the community and its complex histories become a rich resource for young people's literacy repertoires.
Resumo:
Many education systems are experiencing a re-scaling and consolidation of governance through rolling national agendas of standardisation and centralisation. This paper considers the case of Australia as it moves towards implementing its first national curriculum, to explore how teacher educators plan to retain pedagogical space for debate, diversity and contestation of such systemic curricular reform. This paper reports on an interview study conducted with nine teacher educators across the four curriculum areas included in the first wave of the Australian Curriculum: English, Science, Mathematics and History. The analysis reveals how teacher educators reported professional dilemmas around curricular design, and planned to resolve such dilemmas between the anticipated changes and their preferences for what might have been. While different curricular areas displayed different patterns of professional dilemma, the teacher educators are shown to construe their role as one of active curriculum mediators, who, in recontextualising curricular reforms, will use the opportunity to reinsert both residualised and emergent alternatives in their students’ professional value sets. The study also identifies a new set of dilemmas emerging around the politicisation and standardisation of curriculum, and its impact on the teaching profession and teacher educators.
Resumo:
This paper reports one aspect of a study of 28 young adults (18–26 years) engaging with the uncertain (contested) science of a television news report about recent research into mobile phone health risks. The aim of the study was to examine these young people’s ‘accounts of scientific knowledge’ in this context. Seven groups of friends responded to the news report, initially in focus group discussions. Later in semi-structured interviews they elaborated their understanding of the nature of science through their explanations of the scientists’ disagreement and described their mobile phone safety risk assessments. This paper presents their accounts in terms of their views of the nature of science and their concept understanding. Discussions were audio-recorded then analysed by coding the talk in terms of issues raised, which were grouped into themes and interpreted in terms of a moderate social constructionist theoretical framing. In this context, most participants expressed a ‘common sense’ view of the nature of science, describing it as an atheoretical, technical procedure of scientists testing their personal opinions on the issue, subject to the influence of funding sponsors. The roles of theory and data interpretation were largely ignored. It is argued that the nature of science understanding is crucial to engagement with contemporary socioscientific issues, particularly the roles of argumentation, theory, data interpretation, and the distinction of science from common sense. Implications for school science relate primarily to nature of science teaching and the inclusion of socioscientific issues in school science curricula. Future research directions are considered.
Resumo:
Abstract: LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel beam produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. It has the beneficial characteristics of torsionally rigid closed rectangular flanges combined with economical fabrication processes from a single strip of high strength steel. Although the LSB sections are commonly used as flexural members, no research has been undertaken on the shear behaviour of LSBs. Therefore experimental and numerical studies were undertaken to investigate the shear behaviour and strength of LSBs. In this research finite element models of LSBs were developed to investigate their nonlinear shear behaviour including their buckling characteristics and ultimate shear strength. They were validated by comparing their results with available experimental results. The models provided full details of the shear buckling and strength characteristics of LSBs, and showed the presence of considerable improvements to web shear buckling in LSBs and associated post-buckling strength. This paper presents the details of the finite element models of LSBs and the results. Both finite element analysis and experimental results showed that the current design rules in cold-formed steel codes are very conservative for the shear design of LSBs. The ultimate shear capacities from finite element analyses confirmed the accuracy of proposed shear strength equations for LSBs based on the North American specification and DSM design equations. Developed finite element models were used to investigate the reduction to shear capacity of LSBs when full height web side plates were not used or when only one web side plate was used, and these results are also presented in this paper.
Resumo:
CreativityMoneyLove has an important question at its core – ‘what does the education and skills system need to look like in order for people to lead fulfilled creative lives, and in order for the creative and cultural industries in the UK to thrive?’ It is a question that is currently being asked by politicians and policy makers in different ways, in respect to different sections of industry, as they search for levers to economic growth. The aim of this publication is to give creative practitioners, employers and key thinkers a platform to express their views. Creativity as a concept is not an isolated part of the education system. It has the potential to underpin the entire way we learn, in order to build more imaginative, innovative and thoughtful people who can prosper in a rapidly changing world. It is vital therefore that we ask those at the forefront of their fields how they think the system could and should be changing. We have asked people to consider education in the broadest sense, from the school curriculum to vocational training, from university teaching to informal learning. The opinions expressed here are not our own. Many are overtly political, controversial, inspirational, and contradictory. We wanted to capture those views here, at this particular moment in time, when some key decisions are being made about the future of education in the UK. As two agencies that are in a position to take some of the ideas forward, this is an important part of the process of our own strategic thinking for the future. For A New Direction and Creative & Cultural Skills, the content generated through CreativityMoneyLove will provide the stimulus for a range of conversations, interventions, projects and discussions with young people, policy makers, employers, educators and creative practitioners. The dialogue has started at www.creativitymoneylove.co.uk, where all the pieces are also published online, and the bank of opinion can be added to. Spread the word, and add your own article on the subject.
Resumo:
Background: Integrating 3D virtual world technologies into educational subjects continues to draw the attention of educators and researchers alike. The focus of this study is the use of a virtual world, Second Life, in higher education teaching. In particular, it explores the potential of using a virtual world experience as a learning component situated within a curriculum delivered predominantly through face-to-face teaching methods. Purpose: This paper reports on a research study into the development of a virtual world learning experience designed for marketing students taking a Digital Promotions course. The experience was a field trip into Second Life to allow students to investigate how business branding practices were used for product promotion in this virtual world environment. The paper discusses the issues involved in developing and refining the virtual course component over four semesters. Methods: The study used a pedagogical action research approach, with iterative cycles of development, intervention and evaluation over four semesters. The data analysed were quantitative and qualitative student feedback collected after each field trip as well as lecturer reflections on each cycle. Sample: Small-scale convenience samples of second- and third-year students studying in a Bachelor of Business degree, majoring in marketing, taking the Digital Promotions subject at a metropolitan university in Queensland, Australia participated in the study. The samples included students who had and had not experienced the field trip. The numbers of students taking part in the field trip ranged from 22 to 48 across the four semesters. Findings and Implications: The findings from the four iterations of the action research plan helped identify key considerations for incorporating technologies into learning environments. Feedback and reflections from the students and lecturer suggested that an innovative learning opportunity had been developed. However, pedagogical potential was limited, in part, by technological difficulties and by student perceptions of relevance.
Resumo:
Finite element analyses of the human body in seated postures requires digital models capable of providing accurate and precise prediction of the tissue-level response of the body in the seated posture. To achieve such models, the human anatomy must be represented with high fidelity. This information can readily be defined using medical imaging techniques such as Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). Current practices for constructing digital human models, based on the magnetic resonance (MR) images, in a lying down (supine) posture have reduced the error in the geometric representation of human anatomy relative to reconstructions based on data from cadaveric studies. Nonetheless, the significant differences between seated and supine postures in segment orientation, soft-tissue deformation and soft tissue strain create a need for data obtained in postures more similar to the application posture. In this study, we present a novel method for creating digital human models based on seated MR data. An adult-male volunteer was scanned in a simulated driving posture using a FONAR 0.6T upright MRI scanner with a T1 scanning protocol. To compensate for unavoidable image distortion near the edges of the study, images of the same anatomical structures were obtained in transverse and sagittal planes. Combinations of transverse and sagittal images were used to reconstruct the major anatomical features from the buttocks through the knees, including bone, muscle and fat tissue perimeters, using Solidworks® software. For each MR image, B-splines were created as contours for the anatomical structures of interest, and LOFT commands were used to interpolate between the generated Bsplines. The reconstruction of the pelvis, from MR data, was enhanced by the use of a template model generated in previous work CT images. A non-rigid registration algorithm was used to fit the pelvis template into the MR data. Additionally, MR image processing was conducted to both the left and the right sides of the model due to the intended asymmetric posture of the volunteer during the MR measurements. The presented subject-specific, three-dimensional model of the buttocks and thighs will add value to optimisation cycles in automotive seat development when used in simulating human interaction with automotive seats.
Resumo:
The LiteSteel Beam (LSB) is a new hollow flange section with a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. It is subjected to lateral distortional buckling when used as flexural members, which reduces its member moment capacity. An investigation into the flexural behaviour of LSBs using experiments and numerical analyses led to the development of new design rules for LSBs subject to lateral distortional buckling. However, the comparison of moment capacity results with the new design rules showed that they were conservative for some LSB sections while slightly unconservative for others due to the effects of section geometry. It is also unknown whether these design rules are applicable to other hollow flange sections such as hollow flange beams (HFB). This paper presents the details of a study into the lateral distortional buckling behaviour of hollow flange sections such as LSBs, HFBs and their variations. A geometrical parameter defined as the ratio of flange torsional rigidity to the major axis flexural rigidity of the web (GJf/EIxweb) was found to be a critical parameter in evaluating the lateral distortional buckling behaviour and moment capacities of hollow flange sections. New design rules were therefore developed by using a member slenderness parameter modified by K, where K is a function of GJf/EIxweb. The new design rules based on the modified slenderness parameter were found to be accurate in calculating the moment capacities of not only LSBs and HFBs, but also other types of hollow flange sections.
Resumo:
The LiteSteel Beam (LSB) is a new hollow flange channel section developed using a patented dual electric resistance welding and cold-forming process. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a slender web, and is commonly used as flexural members. However, the LSB flexural members are subjected to a relatively new lateral distortional buckling mode, which reduces their moment capacities. Unlike lateral torsional buckling, the lateral distortional buckling of LSBs is characterised by simultaneous lateral deflection, twist and cross sectional change due to web distortion. Therefore a detailed investigation into the lateral buckling behaviour of LSB flexural members was undertaken using experiments and finite element analyses. This paper presents the details of suitable finite element models developed to simulate the behaviour and capacity of LSB flexural members subject to lateral buckling. The models included all significant effects that influence the ultimate moment capacities of such members, including material inelasticity, lateral distortional buckling deformations, web distortion, residual stresses, and geometric imperfections. Comparison of elastic buckling and ultimate moment capacity results with predictions from other numerical analyses and available buckling moment equations, and experimental results showed that the developed finite element models accurately predict the behaviour and moment capacities of LSBs. The validated model was then used in a detailed parametric study that produced accurate moment capacity data for all the LSB sections and improved design rules for LSB flexural members subject to lateral distortional buckling.
Resumo:
Cold-formed steel beams are increasingly used as floor joists and bearers in buildings. Their behaviour and moment capacities are influenced by lateral-torsional buckling when they are not laterally restrained adequately. Past research on lateral-torsional buckling has concentrated on hot-rolled steel beams. Hence a numerical study was undertaken to investigate the lateral-torsional buckling behaviour of simply supported cold-formed steel lipped channel beams subjected to uniform bending. For this purpose a finite element model was developed using ABAQUS and its accuracy was verified using available numerical and experimental results. It was then used in a detailed parametric study to simulate the lateral-torsional buckling behaviour and capacity of cold-formed steel beams under varying conditions. The moment capacity results were compared with the predictions from the current design rules in many cold-formed steel codes and suitable recommendations were made. European design rules were found to be conservative while Australian/New Zealand and North American design rules were unconservative. Hence the moment capacity design equations in these codes were modified in this paper based on the available finite element analysis results. This paper presents the details of the parametric study, recommendations to current design rules and the new design rules proposed in this research for lateral-torsional buckling of cold-formed steel lipped channel beams.