266 resultados para Cough aerosols
Resumo:
Despite recent efforts to assess the release of nanoparticles to the workplace during different nanotechnology activities, the existence of a generalizable trend in the particle release has yet to be identified. This study aimed to characterize the release of synthetic clay nanoparticles from a laboratory-based jet milling process by quantifying the variations arising from primary particle size and surface treatment of the material used, as well as the feed rate of the machine. A broad range of materials were used in this study, and the emitted particles mass (PM2.5) and number concentrations (PNC) were measured at the release source. Analysis of variance, followed by linear mixed-effects modeling, was applied to quantify the variations in PM2.5 and PNC of the released particles caused by the abovementioned factors. The results confirmed that using materials of different primary size and surface treatment affects the release of the particles from the same process by causing statistically-significant variations in PM2.5 and PNC. The interaction of these two factors should also be taken into account as it resulted in variations in the measured particles release properties. Furthermore, the feed rate of the milling machine was confirmed to be another influencing parameter. Although this research does not identify a specific pattern in the release of synthetic clay nanoparticles from the jet milling process generalizable to other similar settings, it emphasizes that each tested case should be handled individually in terms of exposure considerations.
Resumo:
Overhead high-voltage power lines are known sources of corona ions. These ions rapidly attach to aerosols to form charged particles in the environment. Although the effect of ions and charged particles on human health is largely unknown, much attention has focused on the increasing exposure as a result of the expanding power network in urban residential areas. However, it is not widely known that a large number of charged particles in urban environments originate from motor vehicle emissions. In this study, for the first time, we compare the concentrations of charged nanoparticles near busy roads and overhead power lines. We show that large concentrations of both positive and negative charged nanoparticles are present near busy roadways and that these concentrations commonly exceed those under high-voltage power lines. We estimate that the concentration of charged nanoparticles found near two freeways carrying around 120 vehicles per minute exceeded the corresponding maximum concentrations under two corona-emitting overhead power lines by as much as a factor of 5. The difference was most pronounced when a significant fraction of traffic consisted of heavy-duty diesel vehicles which typically have high particle and charge emission rates.
Resumo:
The main aim of the present study was to estimate size segregated doses from e-cigarette aerosols as a function of the airway generation number in lung lobes.. After a 2-second puff, 7.7×1010 particles (DTot) with a surface area of 3.6×103 mm2 (STot), and 3.3×1010 particles with a surface area of 4.2×103 mm2 were deposited in the respiratory system for the electronic and conventional cigarettes, respectively. Alveolar and tracheobronchial deposited doses were compared to the ones received by non-smoking individuals in Western countries, showing a similar order of magnitude. Total regional doses (DR), in head and lobar tracheobronchial and alveolar regions, ranged from 2.7×109 to 1.3×1010 particles and 1.1×109 to 5.3×1010 particles, for the electronic and conventional cigarettes, respectively. DR in the right-upper lung lobe was about twice that found in left-upper lobe and 20% greater in right-lower lobe than the left-lower lobe.
Resumo:
Long term exposure to organic pollutants, both inside and outside school buildings may affect children’s health and influence their learning performance. Since children spend significant amount of time in school, air quality, especially in classrooms plays a key role in determining the health risks associated with exposure at schools. Within this context, the present study investigated the ambient concentrations of Volatile Organic Compounds (VOCs) in 25 primary schools in Brisbane with the aim to quantify the indoor and outdoor VOCs concentrations, identify VOCs sources and their contribution, and based on these; propose mitigation measures to reduce VOCs exposure in schools. One of the most important findings is the occurrence of indoor sources, indicated by the I/O ratio >1 in 19 schools. Principal Component Analysis with Varimax rotation was used to identify common sources of VOCs and source contribution was calculated using an Absolute Principal Component Scores technique. The result showed that outdoor 47% of VOCs were contributed by petrol vehicle exhaust but the overall cleaning products had the highest contribution of 41% indoors followed by air fresheners and art and craft activities. These findings point to the need for a range of basic precautions during the selection, use and storage of cleaning products and materials to reduce the risk from these sources.
Resumo:
Recent 'Global Burden of Disease' studies have provided quantitative evidence of the significant role air pollution plays as a human health risk factor (Lim et al., The Lancet, 380: 2224–2260, 2012). Tobacco smoke, including second hand smoke, household air pollution from solid fuels and ambient particulate matter are among the top risks, leading to lower life expectancy around the world. Indoor air constitutes an environment particularly rich in different types of pollutants, originating from indoor sources, as well as penetrating from outdoors, mixing, interacting or growing (when considering microbes) under the protective enclosure of the building envelope. Therefore, it is not a simple task to follow the dynamics of the processes occurring there, or to quantify the outcomes of the processes in terms of pollutant concentrations and other characteristics. This is further complicated by limitations such as building access for the purpose of air quality monitoring, or the instrumentation which can be used indoors, because of their possible interference with the occupants comfort (due to their large size, noise generated or amount of air drawn). European studies apportioned contributions of indoor versus outdoor sources of indoor air contaminants in 26 European countries and quantified IAQ associated DALYs (Disability-Adjusted Life Years) in those countries (Jantunen et al., Promoting actions for healthy indoor air (IAIAQ), European Commission Directorate General for Health and Consumers, Luxembourg, 2011). At the same time, there has been an increase in research efforts around the world to better understand the sources, composition, dynamics and impacts of indoor air pollution. Particular focus has been directed towards the contemporary sources, novel pollutants and new detection methods. The importance of exposure assessment and personal exposure, the majority of which occurs in various indoor micro¬environments, has also been realized. Overall, this emerging knowledge has been providing input for global assessments of indoor environments, the impact of indoor pollutants and their science based management and control. It was a major outcome of recent international conferences that interdisciplinarity and especially a better colla¬boration between exposure and indoor sciences would be of high benefit for the health related evaluation of environmental stress factors and pollutants. A very good example is the combination of biomonitoring and indoor air, particle and dust analysis to study the exposure routes of semi volatile organic compounds (SVOCs). We have adopted the idea of combining the forces of exposure and indoor sciences for this Special Issue, identified new and challenging topics and have attracted colleagues who are top researchers in their field to provide their inputs. The Special Issue includes papers, which collectively present advances in current research topics and in our view, build the bridge between indoor and exposure sciences.
Resumo:
There is currently a lack of reference values for indoor air fungal concentrations to allow for the interpretation of measurement results in subtropical school settings. Analysis of the results of this work established that, in the majority of properly maintained subtropical school buildings, without any major affecting events such as floods or visible mould or moisture contamination, indoor culturable fungi levels were driven by outdoor concentration. The results also allowed us to benchmark the “baseline range” concentrations for total culturable fungi, Penicillium spp., Cladosporium spp. and Aspergillus spp. in such school settings. The measured concentration of total culturable fungi and three individual fungal genera were estimated using Bayesian hierarchical modelling. Pooling of these estimates provided a predictive distribution for concentrations at an unobserved school. The results indicated that “baseline” indoor concentration levels for indoor total fungi, Penicillium spp., Cladosporium spp. and Aspergillus spp. in such school settings were generally ≤ 1450, ≤ 680, ≤ 480 and ≤ 90 cfu/m3, respectively, and elevated levels would indicate mould damage in building structures. The indoor/outdoor ratio for most classrooms had 95% credible intervals containing 1, indicating that fungi concentrations are generally the same indoors and outdoors at each school. Bayesian fixed effects regression modeling showed that increasing both temperature and humidity resulted in higher levels of fungi concentration.
Resumo:
The aim of this paper is to determine the suitability of solely stationary measurements for exposure assessment and management applications. For this purpose, quantified inhaled particle surface area (IPSA) doses using both stationary and personal particle exposure monitors were evaluated and compared.
Resumo:
Airborne bioaerosols are becoming increasingly recognized as a potential route of transmission for the spread of bacterial and viral respiratory tract infections.
Resumo:
Exposure to atmospheric ultrafine particles (UFPs, D<100 nm) has been an increasingly concern because of their potential impact one health. Motor vehicle emissions are considered as one of the major source of UFPin urban airshed, as the combustion of both petrol and diesel engine leads to emission of particles which are predominantly in this size range (Ban-Weiss et al, 2010; Morawska et al, 2008). New particle formations (NPFs) and major facilities such as airport or seaport has also been identified as major sources of UFPs in urban airshed (Cheung et al, 2010; González et al, 2011; Mazaheri et al, 2013). However, contribution of those urban sources to ambient UFP concentrations has not been comprehensively characterized.
Resumo:
In aerosol research, a common approach for the collection of particulate matter (PM) is the use of filters in order to obtain sufficient material to undertake analysis. For subsequent chemical and toxicological analyses, in most of cases the PM needs to be extracted from the filters. Sonication is commonly used to most efficiently extract the PM from the filters. Extraction protocols generally involve 10 - 60 min of sonication. The energy of ultrasonic waves causes the formation and collapse of cavitation bubbles in the solution. Inside the collapsing cavities the localised temperatures and pressures can reach extraordinary values. Although fleeting, such conditions can lead to pyrolysis of the molecules present inside the cavitation bubbles (gases dissolved in the liquid and solvent vapours), which results in the production of free radicals and the generation of new compounds formed by reactions with these free radicals. For example, simple sonication of pure water will result in the formation of detectable levels of hydroxyl radicals. As hydroxyl radicals are recognised as playing key roles as oxidants in the atmosphere the extraction of PM from filters using sonication is therefore problematic. Sonication can result in significant chemical and physical changes to PM through thermal degradation and other reactions. In this article, an overview of sonication technique as used in aerosol research is provided, the capacity for radical generation under these conditions is described and an analysis is given of the impact of sonication-derived free radicals on three molecular probes commonly used by researchers in this field to detect Reactive Oxygen Species in PM.
Resumo:
The climate in the Arctic is changing faster than anywhere else on earth. Poorly understood feedback processes relating to Arctic clouds and aerosol–cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in situ in this difficult-to-reach region with logistically demanding environmental conditions. The Arctic Summer Cloud Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007–2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait: two in open water and two in the marginal ice zone. After traversing the pack ice northward, an ice camp was set up on 12 August at 87°21' N, 01°29' W and remained in operation through 1 September, drifting with the ice. During this time, extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first-ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggests the possibility of primary marine organically derived cloud condensation nuclei in Arctic stratocumulus clouds. Direct observations of surface fluxes of aerosols could, however, not explain observed variability in aerosol concentrations, and the balance between local and remote aerosols sources remains open. Lack of cloud condensation nuclei (CCN) was at times a controlling factor in low-level cloud formation, and hence for the impact of clouds on the surface energy budget. ASCOS provided detailed measurements of the surface energy balance from late summer melt into the initial autumn freeze-up, and documented the effects of clouds and storms on the surface energy balance during this transition. In addition to such process-level studies, the unique, independent ASCOS data set can and is being used for validation of satellite retrievals, operational models, and reanalysis data sets.
Resumo:
Adverse health effects caused by worker exposure to ultrafine particles have been detected in recent years. The scientific community focuses on the assessment of ultrafine aerosols in different microenvironments in order to determine the related worker exposure/dose levels. To this end, particle size distribution measurements have to be taken along with total particle number concentrations. The latter are obtainable through hand-held monitors. A portable particle size distribution analyzer (Nanoscan SMPS 3910, TSI Inc.) was recently commercialized, but so far no metrological assessment has been performed to characterize its performance with respect to well-established laboratory- based instruments such as the scanning mobility particle sizer (SMPS) spectrometer. The present paper compares the aerosol monitoring capability of the Nanoscan SMPS to the laboratory SMPS in order to evaluate whether the Nanoscan SMPS is suitable for field experiments designed to characterize particle exposure in different microenvironments. Tests were performed both in a Marple calm air chamber, where fresh diesel particulate matter and atomized dioctyl phthalate particles were monitored, and in microenvironments, where outdoor, urban, indoor aged, and indoor fresh aerosols were measured. Results show that the Nanoscan SMPS is able to properly measure the particle size distribution for each type of aerosol investigated, but it overestimates the total particle number concentration in the case of fresh aerosols. In particular, the test performed in the Marple chamber showed total concentrations up to twice those measured by the laboratory SMPS—likely because of the inability of the Nanoscan SMPS unipolar charger to properly charge aerosols made up of aggregated particles. Based on these findings, when field test exposure studies are conducted, the Nanoscan SMPS should be used in tandem
Resumo:
BACKGROUND Bronchiectasis is a major contributor to chronic respiratory morbidity and mortality worldwide. Wheeze and other asthma-like symptoms and bronchial hyperreactivity may occur in people with bronchiectasis. Physicians often use asthma treatments in patients with bronchiectasis. OBJECTIVES To assess the effects of inhaled long-acting beta2-agonists (LABA) combined with inhaled corticosteroids (ICS) in children and adults with bronchiectasis during (1) acute exacerbations and (2) stable state. SEARCH METHODS The Cochrane Airways Group searched the the Cochrane Airways Group Specialised Register of Trials, which includes records identified from the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE and other databases. The Cochrane Airways Group performed the latest searches in October 2013. SELECTION CRITERIA All randomised controlled trials (RCTs) of combined ICS and LABA compared with a control (placebo, no treatment, ICS as monotherapy) in children and adults with bronchiectasis not related to cystic fibrosis (CF). DATA COLLECTION AND ANALYSIS Two review authors extracted data independently using standard methodological procedures as expected by The Cochrane Collaboration. MAIN RESULTS We found no RCTs comparing ICS and LABA combination with either placebo or usual care. We included one RCT that compared combined ICS and LABA with high-dose ICS in 40 adults with non-CF bronchiectasis without co-existent asthma. All participants received three months of high-dose budesonide dipropionate treatment (1600 micrograms). After three months, participants were randomly assigned to receive either high-dose budesonide dipropionate (1600 micrograms per day) or a combination of budesonide with formoterol (640 micrograms of budesonide and 18 micrograms of formoterol) for three months. The study was not blinded. We assessed it to be an RCT with overall high risk of bias. Data analysed in this review showed that those who received combined ICS-LABA (in stable state) had a significantly better transition dyspnoea index (mean difference (MD) 1.29, 95% confidence interval (CI) 0.40 to 2.18) and cough-free days (MD 12.30, 95% CI 2.38 to 22.2) compared with those receiving ICS after three months of treatment. No significant difference was noted between groups in quality of life (MD -4.57, 95% CI -12.38 to 3.24), number of hospitalisations (odds ratio (OR) 0.26, 95% CI 0.02 to 2.79) or lung function (forced expiratory volume in one second (FEV1) and forced vital capacity (FVC)). Investigators reported 37 adverse events in the ICS group versus 12 events in the ICS-LABA group but did not mention the number of individuals experiencing adverse events. Hence differences between groups were not included in the analyses. We assessed the overall evidence to be low quality. AUTHORS' CONCLUSIONS In adults with bronchiectasis without co-existent asthma, during stable state, a small single trial with a high risk of bias suggests that combined ICS-LABA may improve dyspnoea and increase cough-free days in comparison with high-dose ICS. No data are provided for or against, the use of combined ICS-LABA in adults with bronchiectasis during an acute exacerbation, or in children with bronchiectasis in a stable or acute state. The absence of high quality evidence means that decisions to use or discontinue combined ICS-LABA in people with bronchiectasis may need to take account of the presence or absence of co-existing airway hyper-responsiveness and consideration of adverse events associated with combined ICS-LABA.
Resumo:
Electronic cigarette-generated mainstream aerosols were characterized in terms of particle number concentrations and size distributions through a Condensation Particle Counter and a Fast Mobility Particle Sizer spectrometer, respectively. A thermodilution system was also used to properly sample and dilute the mainstream aerosol. Different types of electronic cigarettes, liquid flavors, liquid nicotine contents, as well as different puffing times were tested. Conventional tobacco cigarettes were also investigated. The total particle number concentration peak (for 2-s puff), averaged across the different electronic cigarette types and liquids, was measured equal to 4.39 ± 0.42 × 109 part. cm−3, then comparable to the conventional cigarette one (3.14 ± 0.61 × 109 part. cm−3). Puffing times and nicotine contents were found to influence the particle concentration, whereas no significant differences were recognized in terms of flavors and types of cigarettes used. Particle number distribution modes of the electronic cigarette-generated aerosol were in the 120–165 nm range, then similar to the conventional cigarette one.
Resumo:
Bronchiectasis unrelated to cystic fibrosis is characterized by chronic wet or productive cough, recurrent exacerbations and irreversible bronchial dilatation. After antibiotics and vaccines became available and living standards in affluent countries improved, its resulting reduced prevalence meant bronchiectasis was considered an ‘orphan disease’. This perception has changed recently with increasing use of CT scans to diagnose bronchiectasis, including in those with severe chronic obstructive pulmonary disease or ‘difficult to control’ asthma, and adds to its already known importance in non-affluent countries and disadvantaged Indigenous communities. Following years of neglect, there is renewed interest in identifying the pathogenetic mechanisms of bronchiectasis, including the role of infection, and conducting clinical trials. This is providing much needed evidence to guide antimicrobial therapy, which has relied previously upon extrapolating treatments used in cystic fibrosis and chronic obstructive pulmonary disease. While many knowledge gaps and management challenges remain, the future is improving for patients with bronchiectasis.