285 resultados para Computationally efficient
Resumo:
An opportunistic relay selection scheme improving cooperative diversity is devised using the concept of a virtual SIMO-MISO antenna array. By incorporating multiple users as a virtual distributed antenna, not only helps combat fading but also provides significant advantage in terms of energy consumption. The proposed efficient multiple relay selection uses the concept of the distributed Alamouti scheme in a time varying environment to realize cooperative networking in wireless relay networks and provides the platform for outage, Diversiy-Multiplexing Tradeoff (DMT) and Bit-Error-Rate (BER) analysis to conclude that it is capable of achieving promising diversity gains by operating at much lower SNR when compared with conventional relay selection methods. It also has the added advantage of conserving energy for the relays that are reachable but not selected for the cooperative communication.
Resumo:
Extracting frequent subtrees from the tree structured data has important applications in Web mining. In this paper, we introduce a novel canonical form for rooted labelled unordered trees called the balanced-optimal-search canonical form (BOCF) that can handle the isomorphism problem efficiently. Using BOCF, we define a tree structure guided scheme based enumeration approach that systematically enumerates only the valid subtrees. Finally, we present the balanced optimal search tree miner (BOSTER) algorithm based on BOCF and the proposed enumeration approach, for finding frequent induced subtrees from a database of labelled rooted unordered trees. Experiments on the real datasets compare the efficiency of BOSTER over the two state-of-the-art algorithms for mining induced unordered subtrees, HybridTreeMiner and UNI3. The results are encouraging.
Resumo:
This paper presents an algorithm for mining unordered embedded subtrees using the balanced-optimal-search canonical form (BOCF). A tree structure guided scheme based enumeration approach is defined using BOCF for systematically enumerating the valid subtrees only. Based on this canonical form and enumeration technique, the balanced optimal search embedded subtree mining algorithm (BEST) is introduced for mining embedded subtrees from a database of labelled rooted unordered trees. The extensive experiments on both synthetic and real datasets demonstrate the efficiency of BEST over the two state-of-the-art algorithms for mining embedded unordered subtrees, SLEUTH and U3.
Resumo:
A tag-based item recommendation method generates an ordered list of items, likely interesting to a particular user, using the users past tagging behaviour. However, the users tagging behaviour varies in different tagging systems. A potential problem in generating quality recommendation is how to build user profiles, that interprets user behaviour to be effectively used, in recommendation models. Generally, the recommendation methods are made to work with specific types of user profiles, and may not work well with different datasets. In this paper, we investigate several tagging data interpretation and representation schemes that can lead to building an effective user profile. We discuss the various benefits a scheme brings to a recommendation method by highlighting the representative features of user tagging behaviours on a specific dataset. Empirical analysis shows that each interpretation scheme forms a distinct data representation which eventually affects the recommendation result. Results on various datasets show that an interpretation scheme should be selected based on the dominant usage in the tagging data (i.e. either higher amount of tags or higher amount of items present). The usage represents the characteristic of user tagging behaviour in the system. The results also demonstrate how the scheme is able to address the cold-start user problem.
Resumo:
Acoustic sensors allow scientists to scale environmental monitoring over large spatiotemporal scales. The faunal vocalisations captured by these sensors can answer ecological questions, however, identifying these vocalisations within recorded audio is difficult: automatic recognition is currently intractable and manual recognition is slow and error prone. In this paper, a semi-automated approach to call recognition is presented. An automated decision support tool is tested that assists users in the manual annotation process. The respective strengths of human and computer analysis are used to complement one another. The tool recommends the species of an unknown vocalisation and thereby minimises the need for the memorization of a large corpus of vocalisations. In the case of a folksonomic tagging system, recommending species tags also minimises the proliferation of redundant tag categories. We describe two algorithms: (1) a “naïve” decision support tool (16%–64% sensitivity) with efficiency of O(n) but which becomes unscalable as more data is added and (2) a scalable alternative with 48% sensitivity and an efficiency ofO(log n). The improved algorithm was also tested in a HTML-based annotation prototype. The result of this work is a decision support tool for annotating faunal acoustic events that may be utilised by other bioacoustics projects.
Resumo:
Exploiting metal-free catalysts for the oxygen reduction reaction (ORR) and understanding their catalytic mechanisms are vital for the development of fuel cells (FCs). Our study has demonstrated that in-plane heterostructures of graphene and boron nitride (G/BN) can serve as an efficient metal-free catalyst for the ORR, in which the C-N interfaces of G/BN heterostructures act as reactive sites. The formation of water at the heterointerface is both energetically and kinetically favorable via a fourelectron pathway. Moreover, the water formed can be easily released from the heterointerface, and the catalytically active sites can be regenerated for the next reaction. Since G/BN heterostructures with controlled domain sizes have been successfully synthesized in recent reports (e.g. Nat. Nanotechnol., 2013, 8, 119), our results highlight the great potential of such heterostructures as a promising metal-free catalyst for ORR in FCs.
Resumo:
This paper presents a new approach to web browsing in situ- ations where the user can only provide the device with a sin- gle input command device (switch). Switches have been de- veloped for example for people with locked-in syndrome and are used in combination with scanning to navigate virtual keyboards and desktop interfaces. Our proposed approach leverages the hierarchical structure of webpages to operate a multi-level scan of actionable elements of webpages (links or form elements). As there are a few methods already exist- ing to facilitate browsing under these conditions, we present a theoretical usability evaluation of our approach in com- parison to the existing ones, which takes into account the average time taken to reach any part of a web page (such as a link or a form) but also the number of clicks necessary to reach the goal. We argue that these factors contribute together to usability. In addition, we propose that our ap- proach presents additional usability benefits.
Resumo:
Electric distribution networks are now in the era of transition from passive to active distribution networks with the integration of energy storage devices. Optimal usage of batteries and voltage control devices along with other upgrades in network needs a distribution expansion planning (DEP) considering inter-temporal dependencies of stages. This paper presents an efficient approach for solving multi-stage distribution expansion planning problems (MSDEPP) based on a forward-backward approach considering energy storage devices such as batteries and voltage control devices such as voltage regulators and capacitors. The proposed algorithm is compared with three other techniques including full dynamic, forward fill-in, backward pull-out from the point of view of their precision and their computational efficiency. The simulation results for the IEEE 13 bus network show the proposed pseudo-dynamic forward-backward approach presents good efficiency in precision and time of optimization.
Resumo:
The mean shift tracker has achieved great success in visual object tracking due to its efficiency being nonparametric. However, it is still difficult for the tracker to handle scale changes of the object. In this paper, we associate a scale adaptive approach with the mean shift tracker. Firstly, the target in the current frame is located by the mean shift tracker. Then, a feature point matching procedure is employed to get the matched pairs of the feature point between target regions in the current frame and the previous frame. We employ FAST-9 corner detector and HOG descriptor for the feature matching. Finally, with the acquired matched pairs of the feature point, the affine transformation between target regions in the two frames is solved to obtain the current scale of the target. Experimental results show that the proposed tracker gives satisfying results when the scale of the target changes, with a good performance of efficiency.
Resumo:
The construction industry is a crucial component of the Hong Kong economy, and the safety and efficiency of workers are two of its main concerns. The current approach to training workers relies primarily on instilling practice and experience in conventional teacher-apprentice settings on and off site. Both have their limitations however, on-site training is very inefficient and interferes with progress on site, while off-site training provides little opportunity to develop the practical skills and awareness needed through hands-on experience. A more effective way is to train workers in safety awareness and efficient working by current novel information technologies. This paper describes a new and innovative prototype system – the Proactive Construction Management System (PCMS) – to train precast installation workers to be highly productive while being fully aware of the hazards involved. PCMS uses Chirp-Spread-Spectrum-based (CSS) real-time location technology and Unity3D-based data visualisation technology to track construction resources (people, equipment, materials, etc.) and provide real-time feedback and post-event visualisation analysis in a training environment. A trial of a precast facade installation on a real site demonstrates the benefits gained by PCMS in comparison with equivalent training using conventional methods. It is concluded that, although the study is based on specific industrial conditions found in Hong Kong construction projects, PCMS may well attract wider interest and use in future.
Resumo:
Local spatio-temporal features with a Bag-of-visual words model is a popular approach used in human action recognition. Bag-of-features methods suffer from several challenges such as extracting appropriate appearance and motion features from videos, converting extracted features appropriate for classification and designing a suitable classification framework. In this paper we address the problem of efficiently representing the extracted features for classification to improve the overall performance. We introduce two generative supervised topic models, maximum entropy discrimination LDA (MedLDA) and class- specific simplex LDA (css-LDA), to encode the raw features suitable for discriminative SVM based classification. Unsupervised LDA models disconnect topic discovery from the classification task, hence yield poor results compared to the baseline Bag-of-words framework. On the other hand supervised LDA techniques learn the topic structure by considering the class labels and improve the recognition accuracy significantly. MedLDA maximizes likelihood and within class margins using max-margin techniques and yields a sparse highly discriminative topic structure; while in css-LDA separate class specific topics are learned instead of common set of topics across the entire dataset. In our representation first topics are learned and then each video is represented as a topic proportion vector, i.e. it can be comparable to a histogram of topics. Finally SVM classification is done on the learned topic proportion vector. We demonstrate the efficiency of the above two representation techniques through the experiments carried out in two popular datasets. Experimental results demonstrate significantly improved performance compared to the baseline Bag-of-features framework which uses kmeans to construct histogram of words from the feature vectors.
Resumo:
We consider online prediction problems where the loss between the prediction and the outcome is measured by the squared Euclidean distance and its generalization, the squared Mahalanobis distance. We derive the minimax solutions for the case where the prediction and action spaces are the simplex (this setup is sometimes called the Brier game) and the \ell_2 ball (this setup is related to Gaussian density estimation). We show that in both cases the value of each sub-game is a quadratic function of a simple statistic of the state, with coefficients that can be efficiently computed using an explicit recurrence relation. The resulting deterministic minimax strategy and randomized maximin strategy are linear functions of the statistic.
Resumo:
Given the shift toward energy efficient vehicles (EEVs) in recent years, it is important that the effects of this transition are properly examined. This paper investigates some of these effects by analyzing annual kilometers traveled (AKT) of private vehicle owners in Stockholm in 2008. The difference in emissions associated with EEV adoption is estimated, along with the effect of a congestion-pricing exemption for EEVs on vehicle usage. Propensity score matching is used to compare AKT rates of different vehicle owner groups based on the treatments of: EEV ownership and commuting across the cordon, controlling for confounding factors such as demographics. Through this procedure, rebound effects are identified, with some EEV owners found to have driven up to 12.2% further than non-EEV owners. Although some of these differences could be attributed to the congestion-pricing exemption, the results were not statistically significant. Overall, taking into account lifecycle emissions of each fuel type, average EEV emissions were 50.5% less than average non-EEV emissions, with this reduction in emissions offset by 2.0% due to rebound effects. Although it is important for policy-makers to consider the potential for unexpected negative effects in similar transitions, the overall benefit of greatly reduced emissions appears to outweigh any rebound effects present in this case study.