326 resultados para Code of Civil Procedure
Resumo:
Public road authorities have a key responsibility in driving initiatives for reducing greenhouse gas (GHG) emissions in the road construction project lifecycle. A coherent and efficient chain of procurement processes and methods is needed to convert green policies into tangible actions that capture the potential for GHG reduction. Yet, many infrastructure clients lack developed methodologies regarding green procurement practices. Designing more efficient solutions for green procurement requires an evaluation of the current initiatives and stages of development. A mapping of the current GHG reduction initiatives in Australian public road procurement is presented in this paper. The study includes the five largest Australian state road authorities, which cover 94% of the total 817,089 km of Australian main roads (not local) and account for 96% of the total A$13 billion annual major road construction and maintenance expenditure. The state road authorities’ green procurement processes and tools are evaluated based on interviews and a review of documents. Altogether 12 people, comprising 1-3 people of each organisation, participated in the interviews and provided documents. An evaluation matrix was developed for mapping the findings across the lifecycle of road construction project delivery. The results show how Australian state road authorities drive decisions with an impact on GHG emissions on the strategic planning phase, project development phase, and project implementation phase. The road authorities demonstrate varying levels of advancement in their green procurement methodologies. Six major gaps in the current green procurement processes are identified and, respectively, six recommendations for future research and development are suggested. The greatest gaps remain in the project development phase, which has a critical role in fixing the project (GHG reduction) goals, identifying risks and opportunities, and selecting the contractor to deliver the project. Specifically, the role of mass-haul optimisation as a part of GHG minimisation was reviewed, and mass-haul management was found to be an underutilised element with GHG reduction potential.
Resumo:
The construction of a Lunar Base is seen as achievable. The paper provides a useful summary of challenges facing pioneers of lunar base construction. It highlights important aspects of the location and use of the facility, the local environment, the human physiological adaptation process, and a principal concern for the construction industry—construction materials and methods required to erect the facility. Specific emphasis is placed on the latter two major issues. The authors believe that a lunar base will be built, operated and maintained by humans. It may be the next generation that carry out these dreams, but it is research of the type reported in this paper that will make these dreams a reality.
Resumo:
Crash statistics in Singapore from 2001 to 2005 have shown that motorcycles are involved in about 54% of intersection crashes. The overall involvement of motorcycles in crashes as the not-at-fault party is about 43% but at intersections, the corresponding percentage is increased to 57%. Quasi-induced exposure estimates show that the motorcycle exposure rate at signalized intersections is 41.7% even though motorcycles account for only 19% of the vehicle population. This study seeks to examine in greater details, the problem of motorcycle exposure at signalized intersections. In particular, the exposure arising from potential crashes with red light running vehicles from the conflicting stream at four signalized intersections is investigated. The results show that motorcycles are more exposed because they tend to accumulate near the stop-line during the red phase to facilitate an earlier discharge during the initial period of the green which is the more vulnerable period. At sites where there are more weaving opportunities because the lanes are wider or where there are exclusive right-turn lanes, the accumulation is higher and hence an increased exposure is observed. The analysis also shows that the presence of heavy vehicles tends to decrease motorcycle exposure as their weaving opportunities become restricted as well as there is a greater reluctance for them to weave past or queue alongside the heavy vehicles and their effects intensify for narrower lane width.
Resumo:
Most crash severity studies ignored severity correlations between driver-vehicle units involved in the same crashes. Models without accounting for these within-crash correlations will result in biased estimates in the factor effects. This study developed a Bayesian hierarchical binomial logistic model to identify the significant factors affecting the severity level of driver injury and vehicle damage in traffic crashes at signalized intersections. Crash data in Singapore were employed to calibrate the model. Model fitness assessment and comparison using Intra-class Correlation Coefficient (ICC) and Deviance Information Criterion (DIC) ensured the suitability of introducing the crash-level random effects. Crashes occurring in peak time, in good street lighting condition, involving pedestrian injuries are associated with a lower severity, while those in night time, at T/Y type intersections, on right-most lane, and installed with red light camera have larger odds of being severe. Moreover, heavy vehicles have a better resistance on severe crash, while crashes involving two-wheel vehicles, young or aged drivers, and the involvement of offending party are more likely to result in severe injuries.
Resumo:
This study proposes a framework of a model-based hot spot identification method by applying full Bayes (FB) technique. In comparison with the state-of-the-art approach [i.e., empirical Bayes method (EB)], the advantage of the FB method is the capability to seamlessly integrate prior information and all available data into posterior distributions on which various ranking criteria could be based. With intersection crash data collected in Singapore, an empirical analysis was conducted to evaluate the following six approaches for hot spot identification: (a) naive ranking using raw crash data, (b) standard EB ranking, (c) FB ranking using a Poisson-gamma model, (d) FB ranking using a Poisson-lognormal model, (e) FB ranking using a hierarchical Poisson model, and (f) FB ranking using a hierarchical Poisson (AR-1) model. The results show that (a) when using the expected crash rate-related decision parameters, all model-based approaches perform significantly better in safety ranking than does the naive ranking method, and (b) the FB approach using hierarchical models significantly outperforms the standard EB approach in correctly identifying hazardous sites.
Resumo:
Motorcycles are particularly vulnerable in right-angle crashes at signalized intersections. The objective of this study is to explore how variations in roadway characteristics, environmental factors, traffic factors, maneuver types, human factors as well as driver demographics influence the right-angle crash vulnerability of motorcycles at intersections. The problem is modeled using a mixed logit model with a binary choice category formulation to differentiate how an at-fault vehicle collides with a not-at-fault motorcycle in comparison to other collision types. The mixed logit formulation allows randomness in the parameters and hence takes into account the underlying heterogeneities potentially inherent in driver behavior, and other unobserved variables. A likelihood ratio test reveals that the mixed logit model is indeed better than the standard logit model. Night time riding shows a positive association with the vulnerability of motorcyclists. Moreover, motorcyclists are particularly vulnerable on single lane roads, on the curb and median lanes of multi-lane roads, and on one-way and two-way road type relative to divided-highway. Drivers who deliberately run red light as well as those who are careless towards motorcyclists especially when making turns at intersections increase the vulnerability of motorcyclists. Drivers appear more restrained when there is a passenger onboard and this has decreased the crash potential with motorcyclists. The presence of red light cameras also significantly decreases right-angle crash vulnerabilities of motorcyclists. The findings of this study would be helpful in developing more targeted countermeasures for traffic enforcement, driver/rider training and/or education, safety awareness programs to reduce the vulnerability of motorcyclists.
Resumo:
Red light cameras (RLC) have been used to reduce right-angle collisions at signalized intersections. However, the effect of RLCs on motorcycle crashes has not been well investigated. The objective of this study is to evaluate the effectiveness of RLCs on motorcycle safety in Singapore. This is done by comparing their exposure, proneness of at-fault right-angle crashes as well as the resulting right-angle collisions at RLC with those at non-RLC sites. Estimating the crash vulnerability from not-at-fault crash involvements, the study shows that with a RLC, the relative crash vulnerability or crash-involved exposure of motorcycles at right-angle crashes is reduced. Furthermore, field investigation of motorcycle maneuvers reveal that at non-RLC arms, motorcyclists usually queue beyond the stop-line, facilitating an earlier discharge and hence become more exposed to the conflicting stream. However at arms with a RLC, motorcyclists are more restrained to avoid activating the RLC and hence become less exposed to conflicting traffic during the initial period of the green. The study also shows that in right-angle collisions, the proneness of at-fault crashes of motorcycles is lowest among all vehicle types. Hence motorcycles are more likely to be victims than the responsible parties in right-angle crashes. RLCs have also been found to be very effective in reducing at-fault crash involvements of other vehicle types which may implicate exposed motorcycles in the conflicting stream. Taking all these into account, the presence of RLCs should significantly reduce the vulnerability of motorcycles at signalized intersections.
Resumo:
While extensive research efforts have been devoted to improve the motorcycle safety, the relationship between the rider behavior and the crash risk is still not well understood.The objective of this study is to evaluate how behavioral factors influence crash risk and to identify the most vulnerable group of motorcyclists. To explore the rider behavior, a questionnaire containing 61-items of impulsive sensation seeking, aggression, and risk-taking behavior was developed. By clustering the crash risk using the medoid portioning algorithm, the log-linear model relating the rider behavior to crash risk has been developed. Results show that crash-involved motorcyclists score higher in all three behavioral traits. Aggressive and high risk-taking motorcyclists are more likely to fall under the high vulnerable group while impulsive sensation seeking is not found to be significant. Defining personality types from aggression and risk-taking behavior, “Extrovert” and “Follower” personality type of motorcyclists are more prone to crashes. The findings of this study will be useful for road safety campaign planners to be more focused in the target group as well as those who employ motorcyclists for their delivery business