316 resultados para Chemical industries


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In coastal areas, extreme weather events, such as floods and cyclones, can have debilitating effects on the social and economic viability of marine-based industries. In March 2011, the Great Barrier Reef Marine Park Authority implemented an Extreme Weather Response Program, following a period of intense flooding and cyclonic activity between December 2010 and February 2011. In this paper, we discuss the results of a project within the Program, which aimed to: (1) assess the impacts of extreme weather events on regional tourism and commercial fishing industries; and (2) develop and road-test an impact assessment matrix to improve government and industry responses to extreme weather events. Results revealed that extreme weather events both directly and indirectly affected all five of the measured categories, i.e. ecological, personal, social, infrastructure and economic components. The severity of these impacts, combined with their location and the nature of their business, influenced how tourism operators and fishers assessed the impact of the events (low, medium, high or extreme). The impact assessment tool was revised following feedback obtained during stakeholder workshops and may prove useful for managers in responding to potential direct and indirect impacts of future extreme weather events on affected marine industries. © 2013 Planning Institute Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sugarcane biorefineries co-producing fuels, green chemicals and bio-products offer great potential for improving the profitability and sustainability of sugarcane industries around the world. Sugarcane bagasse is widely regarded as one of the best biomass feedstocks for early adoption and commercialisation of biorefining technologies because of the large scale of the resource and its availability at sugar factories. Biomass biorefineries aim to convert bagasse through biochemical and thermochemical processes to produce low cost fermentable sugars which are a platform for value-adding. Through subsequent fermentation technologies or chemical synthesis, the sugars can be converted to fuels including ethanol and butanol, oils, organic acids such as succinic and levulinic and polymer precursors. Other biorefinery products can include food and animal feeds, plastics, fibre products and resins. Recent advances in biorefinery production technologies are being demonstrated in a unique research facility at the Queensland University of Technology’s Mackay Renewable Biocommodities Pilot Plant in Mackay, Australia. This pilot scale production facility located at Mackay Sugar Ltd’s Racecourse Mill is demonstrating the production of a range of fuels and other products from sugarcane bagasse. This paper will address the opportunities available for sugarcane biorefineries to contribute to future profitability and sustainability of the sugarcane industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Budbreak in kiwifruit (Actinidia deliciosa) can be poor in locations that have warm winters with insufficient winter chilling. Kiwifruit vines are often treated with the dormancy-breaking chemical hydrogen cyanamide (HC) to increase and synchronize budbreak. This treatment also offers a tool to understand the processes involved in budbreak. A genomics approach is presented here to increase our understanding of budbreak in kiwifruit. Most genes identified following HC application appear to be associated with responses to stress, but a number of genes appear to be associated with the reactivation of growth. Three patterns of gene expression were identified: Profile 1, an HC-induced transient activation; Profile 2, an HC-induced transient activation followed by a growth-related activation; and Profile 3, HC- and growth-repressed. One group of genes that was rapidly up-regulated in response to HC was the glutathione S-transferase (GST) class of genes, which have been associated with stress and signalling. Previous budbreak studies, in three other species, also report up-regulated GST expression. Phylogenetic analysis of these GSTs showed that they clustered into two sub-clades, suggesting a strong correlation between their expression and budbreak across species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Natural product provenance is important in the food, beverage and pharmaceutical industries, for consumer confidence and with health implications. Raman spectroscopy has powerful molecular fingerprint abilities. Surface Enhanced Raman Spectroscopy’s (SERS) sharp peaks allow distinction between minimally different molecules, so it should be suitable for this purpose. Methods Naturally caffeinated beverages with Guarana extract, coffee and Red Bull energy drink as a synthetic caffeinated beverage for comparison (20 µL ea.) were reacted 1:1 with Gold nanoparticles functionalised with anti-caffeine antibody (ab15221) (10 minutes), air dried and analysed in a micro-Raman instrument. The spectral data was processed using Principle Component Analysis (PCA). Results The PCA showed Guarana sourced caffeine varied significantly from synthetic caffeine (Red Bull) on component 1 (containing 76.4% of the variance in the data). See figure 1. The coffee containing beverages, and in particular Robert Timms (instant coffee) were very similar on component 1, but the barista espresso showed minor variance on component 1. Both coffee sourced caffeine samples varied with red Bull on component 2, (20% of variance). ************************************************************ Figure 1 PCA comparing a naturally caffeinated beverage containing Guarana with coffee. ************************************************************ Discussion PCA is an unsupervised multivariate statistical method that determines patterns within data. Figure 1 shows Caffeine in Guarana is notably different to synthetic caffeine. Other researchers have revealed that caffeine in Guarana plants is complexed with tannins. Naturally sourced/ lightly processed caffeine (Monster Energy, Espresso) are more inherently different than synthetic (Red Bull) /highly processed (Robert Timms) caffeine, in figure 1, which is consistent with this finding and demonstrates this technique’s applicability. Guarana provenance is important because it is still largely hand produced and its demand is escalating with recognition of its benefits. This could be a powerful technique for Guarana provenance, and may extend to other industries where provenance / authentication are required, e.g. the wine or natural pharmaceuticals industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Creative occupations exist across the entire economy. The creative worker’s habitus cannot be discovered by looking only in film studios, games companies or artist’s garrets. Work practices, evolved through the traditions of the creative and performing arts, are now deployed to create new services and products across all sectors, to develop process innovations, and to change the distribution thereof. Yet the bulk of academic study of creative work (both functionalist and critical), as well as the content of higher/further professional education programs and everyday understanding of creative workers, focuses on one subset of the Creative Industries: those involved in the production of cultural goods or services (film, television, music etc.) for consumption by the general public. And further, the bulk of existing academic work focuses on those creative workers employed in cultural production industries. However, as recent work has shown, this focus misses both the large (and increasing) number of creative workers embedded in industries beyond the core Creative Industries (for example, manufacturing, banking, mining) and those creative workers and firms that supply services to business as well as to the general public, such as architects, technical writers, and graphic designers (see Cunningham 2013; Potts and Cunningham 2008; Potts, Cunningham, Hartley and Omerod 2008). This book focuses on this subset of very important, and yet under-recognized creative workers: embedded creative workers and providers of creative services into other sectors of the economy, as indicated in the following taxonomy (Figure 1.1), which juxtaposes occupation and industry sector...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of a change of tillage and crop residue management practice on the chemical and micro-biological properties of a cereal-producing red duplex soil was investigated by superimposing each of three management practices (CC: conventional cultivation, stubble burnt, crop conventionally sown; DD: direct-drilling, stubble retained, no cultivation, crop direct-drilled; SI: stubble incorporated with a single cultivation, crop conventionally sown), for a 3-year period on plots previously managed with each of the same three practices for 14 years. A change from DD to CC or SI practice resulted in a significant decline, in the top 0-5 cm of soil, in organic C, total N, electrical conductivity, NH4-N, NO3-N, soil moisture holding capacity, microbial biomass and CO2 respiration as well as a decline in the microbial quotient (the ratio of microbial biomass C to organic C; P <0.05). In contrast, a change from SI to DD or CC practice or a change from CC to DD or SI practice had only negligible impact on soil chemical properties (P >0.05). However, there was a significant increase in microbial biomass and the microbial quotient in the top 0-5 cm of soil following the change from CC to DD or SI practice and with the change from SI to DD practice (P <0.05). Analysis of ester-linked fatty acid methyl esters (EL-FAMEs) extracted from the 0- to 5-cm and 5- to 10-cm layers of the soils of the various treatments detected changes in the FAME profiles following a change in tillage practice. A change from DD practice to SI or CC practice was associated with a significant decline in the ratio of fungal to bacterial fatty acids in the 0- to 5-cm soil (P <0.05). The results show that a change in tillage practice, particularly the cultivation of a previously minimum-tilled (direct-drilled) soil, will result in significant changes in soil chemical and microbiological properties within a 3-year period. They also show that soil microbiological properties are sensitive indicators of a change in tillage practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene films with different structures were catalytically grown on the silicon substrate pre-deposited with a gold film by hot filament chemical vapor deposition under different conditions, where methane, hydrogen and nitrogen were used as the reactive gases. The morphological and compositional properties of graphene films were studied using advanced instruments including field emission scanning electron microscopy, micro-Raman spectroscopy and X-ray photoelectron spectroscopy. The results indicate that the structure and composition of graphene films are changed with the variation of the growth conditions. According to the theory related to thermodynamics, the formation of graphene films was theoretically analyzed and the results indicate that the formation of graphene films is related to the fast incorporation and precipitation of carbon. The electron field emission (EFE) properties of graphene films were studied in a high vacuum system of ∼10-6 Pa and the EFE results show that the turn-on field is in a range of 5.2-5.64 V μm-1 and the maximum current density is about 63 μ A cm-2 at the field of 7.7 V μm-1. These results are important to control the structure of graphene films and have the potential applications of graphene in various nanodevices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tunable synthesis of bimetallic AuxAg1-x alloyed nanoparticles and in situ monitoring of their plasmonic responses is presented. This is a new conceptual approach based on green and energy efficient, reactive, and highly-non-equilibrium microplasma chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the chemical synthesis of the arrays of silicon oxide nanodots and their self-organization on the surface via physical processes triggered by surface charges. The method based on chemically active oxygen plasma leads to the rearrangement of nanostructures and eventually to the formation of groups of nanodots. This behavior is explained in terms of the effect of electric field on the kinetics of surface processes. The direct measurements of the electric charges on the surface demonstrate that the charge correlates with the density and arrangement of nanodots within the array. Extensive numerical simulations support the proposed mechanism and prove a critical role of the electric charges in the self-organization. This simple and environment-friendly self-guided process could be used in the chemical synthesis of large arrays of nanodots on semiconducting surfaces for a variety of applications in catalysis, energy conversion and storage, photochemistry, environmental and biosensing, and several others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanowalls (CNWs) are self-assembled, free-standing, few-layered graphenenano-structures with large surface area, and thin graphene edges. For their application to nanobiotechnology, the effects of chemisorbed species on surface wettability were investigated. The surfaces of as-grown CNWs obtained using CH4/H2 mixture were hydrophilic. After Ar atmospheric pressure plasma treatments for up to 30 s, the contact angles of water droplets on the CNWs decreased from 51° to 5°, owing to a result of oxidation only at edges and surface defects. They increased up to 147° by CF4 plasma treatment at low pressure. The wide-range control of surface wettability of CNWs was realized by post-growth plasma treatments. We also demonstrated detection of bovine serum albumin using surface-modified CNWs as electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different magnetization in vertical graphenes fabricated by plasma-enabled chemical conversion of organic precursors with various oxygen atom contents and bonding energies was achieved. The graphenes grown from fat-like precursors exhibit magnetization up to 8 emu g−1, whereas the use of sugar-containing precursors results in much lower numbers. A relatively high Curie temperature exceeding 600 K was also demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogenated carbon nanotips with a low atomic concentration of nitrogen have been synthesized by using a custom-designed plasma-enhanced hot-filament plasma chemical vapor deposition system. The properties (including morphology, structure, composition, photoluminescence, etc.) of the synthesized nitrogenated carbon nanotips are investigated using advanced characterization tools. The room-temperature photoluminescence measurements show that the nitrogenated carbon nanotips can generate two distinct broad emissions located at ∼405 and ∼507 nm, respectively. Through the detailed analysis, it is shown that these two emission bands are attributed to the transition between the lone pair valence and bands, which are related to the sp3 and sp2 C-N bonds, respectively. These results are highly relevant to advanced applications of nitrogenated carbon nanotips in light emitting optoelectronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic transport in both intrinsic and acid-treated single-walled carbon nanotube networks containing more than 90% semiconducting nanotubes is investigated using temperature-dependent resistance measurements. The semiconducting behavior observed in the intrinsic network is attributed to the three-dimensional electron hopping mechanism. In contrast, the chemical doping mechanism in the acid-treated network is found to be responsible for the revealed metal-like linear resistivity dependence in a broad temperature range. This effective method to control the electrical conductivity of single-walled carbon nanotube networks is promising for future nanoscale electronics, thermometry, and bolometry. © 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotips have been synthesized from a thin carbon film deposited on silicon by bias-enhanced hot filament chemical vapor deposition under different process parameters. The results of scanning electron microscopy indicate that high-quality carbon nanotips can only be obtained under conditions when the ion flux is effectively drawn from the plasma sustained in a CH4 + NH3 + H2 gas mixture. It is shown that the morphology of the carbon nanotips can be controlled by varying the process parameters such as the applied bias, gas pressure, and the NH3 / H2 mass flow ratios. The nanotip formation process is examined through a model that accounts for surface diffusion, in addition to sputtering and deposition processes included in the existing models. This model makes it possible to explain the major difference in the morphologies of the carbon nanotips formed without and with the aid of the plasma as well as to interpret the changes of their aspect ratio caused by the variation in the ion/gas fluxes. Viable ways to optimize the plasma-based process parameters to synthesize high-quality carbon nanotips are suggested. The results are relevant to the development of advanced plasma-/ion-assisted methods of nanoscale synthesis and processing.