495 resultados para Biological Monitoring


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wound healing involves a complex series of biochemical events and has traditionally been managed with 'low tech' dressings and bandages. The concept that diagnostic and theranostic sensors can complement wound management is rapidly growing in popularity as there is tremendous potential to apply this technology to both acute and chronic wounds. Benefits in sensing the wound environment include reduction of hospitalization time, prevention of amputations and better understanding of the processes which impair healing. This review discusses the state-of-the-art in detection of markers associated with wound healing and infection, utilizing devices imbedded within dressings or as point-of-care techniques to allow for continual or rapid wound assessment and monitoring. Approaches include using biological or chemical sensors of wound exudates and volatiles to directly or indirectly detect bacteria, monitor pH, temperature, oxygen and enzymes. Spectroscopic and imaging techniques are also reviewed as advanced wound monitoring techniques. The review concludes with a discussion of the limitations of and future directions for this field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While there are sources of ions both outdoors and indoors, ventilation systems can introduce as well as remove ions from the air. As a result, indoor ion concentrations are not directly related to air exchange rates in buildings. In this study, we attempt to relate these quantities with the view of understanding how charged particles may be introduced into indoor spaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and effective down-sample algorithm, Peak-Hold-Down-Sample (PHDS) algorithm is developed in this paper to enable a rapid and efficient data transfer in remote condition monitoring applications. The algorithm is particularly useful for high frequency Condition Monitoring (CM) techniques, and for low speed machine applications since the combination of the high sampling frequency and low rotating speed will generally lead to large unwieldy data size. The effectiveness of the algorithm was evaluated and tested on four sets of data in the study. One set of the data was extracted from the condition monitoring signal of a practical industry application. Another set of data was acquired from a low speed machine test rig in the laboratory. The other two sets of data were computer simulated bearing defect signals having either a single or multiple bearing defects. The results disclose that the PHDS algorithm can substantially reduce the size of data while preserving the critical bearing defect information for all the data sets used in this work even when a large down-sample ratio was used (i.e., 500 times down-sampled). In contrast, the down-sample process using existing normal down-sample technique in signal processing eliminates the useful and critical information such as bearing defect frequencies in a signal when the same down-sample ratio was employed. Noise and artificial frequency components were also induced by the normal down-sample technique, thus limits its usefulness for machine condition monitoring applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. A variety of interactions between up to three different movement proteins (MPs), the coat protein (CP) and genomic DNA mediate the inter- and intra-cellular movement of geminiviruses in the genus Begomovirus. Although movement of viruses in the genus Mastrevirus is less well characterized, direct interactions between a single MP and the CP of these viruses is also clearly involved in both intra- and intercellular trafficking of virus genomic DNA. However, it is currently unknown how specific these MP-CP interactions are, nor how disruption of these interactions might impact on virus viability. Results. Using chimaeric genomes of two strains of Maize streak virus (MSV) we adopted a genetic approach to investigate the gross biological effects of interfering with interactions between virus MP and CP homologues derived from genetically distinct MSV isolates. MP and CP genes were reciprocally exchanged, individually and in pairs, between maize (MSV-Kom)- and Setaria sp. (MSV-Set)-adapted isolates sharing 78% genome-wide sequence identity. All chimaeras were infectious in Zea mays c.v. Jubilee and were characterized in terms of symptomatology and infection efficiency. Compared with their parental viruses, all the chimaeras were attenuated in symptom severity, infection efficiency, and the rate at which symptoms appeared. The exchange of individual MP and CP genes resulted in lower infection efficiency and reduced symptom severity in comparison with exchanges of matched MP-CP pairs. Conclusion. Specific interactions between the mastrevirus MP and CP genes themselves and/or their expression products are important determinants of infection efficiency, rate of symptom development and symptom severity. © 2008 van der Walt et al; licensee BioMed Central Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – As a consequence of rapid urbanisation and globalisation, cities have become the engines of population and economic growth. Hence, natural resources in and around the cities have been exposed to externalities of urban development processes. This paper introduces a new sustainability assessment approach that is tested in a pilot study. The paper aims to assist policy-makers and planners investigating the impacts of development on environmental systems, and produce effective policies for sustainable urban development. Design/methodology/approach – The paper introduces an indicator-based indexing model entitled “Indexing Model for the Assessment of Sustainable Urban Ecosystems” (ASSURE). The ASSURE indexing model produces a set of micro-level environmental sustainability indices that is aimed to be used in the evaluation and monitoring of the interaction between human activities and urban ecosystems. The model is an innovative approach designed to assess the resilience of ecosystems towards impacts of current development plans and the results serve as a guide for policymakers to take actions towards achieving sustainability. Findings – The indexing model has been tested in a pilot case study within the Gold Coast City, Queensland, Australia. This paper presents the methodology of the model and outlines the preliminary findings of the pilot study. The paper concludes with a discussion on the findings and recommendations put forward for future development and implementation of the model. Originality/value – Presently, there is a few sustainability indices developed to measure the sustainability at local, regional, national and international levels. However, due to challenges in data collection difficulties and availability of local data, there is no effective assessment model at the microlevel that the assessment of urban ecosystem sustainability accurately. The model introduced in this paper fills this gap by focusing on parcel-scale and benchmarking the environmental performance in micro-level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constructed wetlands are a common structural treatment measure employed to remove stormwater pollutants and forms an important part of the Water Sensitive Urban Design (WSUD) treatment suite. In a constructed wetland, a range of processes such as settling, filtration, adsorption, and biological uptake play a role in stormwater treatment. Occurrence and effectiveness of these processes are variable and influenced by hydraulic, chemical and biological factors. The influence of hydraulic factors on treatment processes are of particular concern. This paper presents outcomes of a comprehensive study undertaken to define the treatment performance of a constructed wetland highlighting the influence of hydraulic factors. The study included field monitoring of a well established constructed wetland for quantity and quality factors, development of a conceptual hydraulic model to simulate water movement within the wetland and multivariate analysis of quantity and quality data to investigate correlations and to define linkages between treatment performance and influential hydraulic factors. Total Suspended Solids (TSS), Total Nitrogen (TN) and Total Phosphorus (TP) concentrations formed the primary pollutant parameters investigated in the data analysis. The outcomes of the analysis revealed significant reduction in event mean concentrations of all three pollutants species. Treatment performance of the wetland was significantly different for storm events above and below the prescribed design event. For events below design event, TSS and TN load reduction was comparatively high and strongly influenced by high retention time. For events above design event, TP load reduction was comparatively high and was found to be influenced by the characteristics of TP wash-off from catchment surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Performance of a constructed wetland is commonly reported as variable due to the site specific nature of influential factors. This paper discusses outcomes from an in-depth study which characterised treatment performance of a wetland based on the variation in runoff regime. The study included a comprehensive field monitoring of a well established constructed wetland in Gold Coast, Australia. Samples collected at the inlet and outlet was tested for Total Suspended Solids (TSS), Total Nitrogen (TN) and Total Phosphorus (TP). Pollutant concentrations in the outflow were found to be consistent irrespective of the variation in inflow water quality. The analysis revealed two different treatment characteristics for events with different rainfall depths. TSS and TN load reduction is strongly influenced by hydraulic retention time where performance is higher for rainfall events below the design event. For small events, treatment performance is higher at the beginning of the event and gradually decreased during the course of the event. For large events, the treatment performance is comparatively poor at the beginning and improved during the course of the event. The analysis also confirmed the variable treatment trends for different pollutant types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the next great challenges of cell biology is the determination of the enormous number of protein structures encoded in genomes. In recent years, advances in electron cryo-microscopy and high-resolution single particle analysis have developed to the point where they now provide a methodology for high resolution structure determination. Using this approach, images of randomly oriented single particles are aligned computationally to reconstruct 3-D structures of proteins and even whole viruses. One of the limiting factors in obtaining high-resolution reconstructions is obtaining a large enough representative dataset ($>100,000$ particles). Traditionally particles have been manually picked which is an extremely labour intensive process. The problem is made especially difficult by the low signal-to-noise ratio of the images. This paper describes the development of automatic particle picking software, which has been tested with both negatively stained and cryo-electron micrographs. This algorithm has been shown to be capable of selecting most of the particles, with few false positives. Further work will involve extending the software to detect differently shaped and oriented particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on some findings from the first year of a three-year longitudinal study, in which seventh to ninth-graders were introduced to engineering education. Specifically, the paper addresses students’ responses to an initial design activity involving bridge construction, which was implemented at the end of seventh grade. This paper also addresses how students created their bridge designs and applied these in their bridge constructions; their reflections on their designs; their reflections on why the bridge failed to support increased weights during the testing process; and their suggestions on ways in which they would improve their bridge designs. The present findings include identification of six, increasingly sophisticated levels of illustrated bridge designs, with designs improving between the classroom and homework activities of two focus groups of students. Students’ responses to the classroom activity revealed a number of iterative design processes, where the problem goals, including constraints, served as monitoring factors for students’ generation of ideas, design thinking and construction of an effective bridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ubiquitination involves the attachment of ubiquitin (Ub) to lysine residues on substrate proteins or itself, which can result in protein monoubiquitination or polyubiquitination. Polyubiquitination through different lysines (seven) or the N-terminus of Ub can generate different protein-Ub structures. These include monoubiquitinated proteins, polyubiqutinated proteins with homotypic chains through a particular lysine on Ub or mixed polyubiquitin chains generated by polymerization through different Ub lysines. The ability of the ubiquitination pathway to generate different protein-Ub structures provides versatility of this pathway to target proteins to different fates. Protein ubiquitination is catalyzed by Ub-conjugating and Ub-ligase enzymes, with different combinations of these enzymes specifying the type of Ub modification on protein substrates. How Ub-conjugating and Ub-ligase enzymes generate this structural diversity is not clearly understood. In the current review, we discuss mechanisms utilized by the Ub-conjugating and Ub-ligase enzymes to generate structural diversity during protein ubiquitination, with a focus on recent mechanistic insights into protein monoubiquitination and polyubiquitination.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stormwater is a potential and readily available alternative source for potable water in urban areas. However, its direct use is severely constrained by the presence of toxic pollutants, such as heavy metals (HMs). The presence of HMs in stormwater is of concern because of their chronic toxicity and persistent nature. In addition to human health impacts, metals can contribute to adverse ecosystem health impact on receiving waters. Therefore, the ability to predict the levels of HMs in stormwater is crucial for monitoring stormwater quality and for the design of effective treatment systems. Unfortunately, the current laboratory methods for determining HM concentrations are resource intensive and time consuming. In this paper, applications of multivariate data analysis techniques are presented to identify potential surrogate parameters which can be used to determine HM concentrations in stormwater. Accordingly, partial least squares was applied to identify a suite of physicochemical parameters which can serve as indicators of HMs. Datasets having varied characteristics, such as land use and particle size distribution of solids, were analyzed to validate the efficacy of the influencing parameters. Iron, manganese, total organic carbon, and inorganic carbon were identified as the predominant parameters that correlate with the HM concentrations. The practical extension of the study outcomes to urban stormwater management is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to forecast machinery health is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models which attempt to forecast machinery health based on condition data such as vibration measurements. This paper demonstrates how the population characteristics and condition monitoring data (both complete and suspended) of historical items can be integrated for training an intelligent agent to predict asset health multiple steps ahead. The model consists of a feed-forward neural network whose training targets are asset survival probabilities estimated using a variation of the Kaplan–Meier estimator and a degradation-based failure probability density function estimator. The trained network is capable of estimating the future survival probabilities when a series of asset condition readings are inputted. The output survival probabilities collectively form an estimated survival curve. Pump data from a pulp and paper mill were used for model validation and comparison. The results indicate that the proposed model can predict more accurately as well as further ahead than similar models which neglect population characteristics and suspended data. This work presents a compelling concept for longer-range fault prognosis utilising available information more fully and accurately.