336 resultados para BLOOD VOLUME
Resumo:
Deoxyribonucleic acid (DNA) extraction has considerably evolved since it was initially performed back in 1869. It is the first step required for many of the available downstream applications used in the field of molecular biology. Whole blood samples are one of the main sources used to obtain DNA, and there are many different protocols available to perform nucleic acid extraction on such samples. These methods vary from very basic manual protocols to more sophisticated methods included in automated DNA extraction protocols. Based on the wide range of available options, it would be ideal to determine the ones that perform best in terms of cost-effectiveness and time efficiency. We have reviewed DNA extraction history and the most commonly used methods for DNA extraction from whole blood samples, highlighting their individual advantages and disadvantages. We also searched current scientific literature to find studies comparing different nucleic acid extraction methods, to determine the best available choice. Based on our research, we have determined that there is not enough scientific evidence to support one particular DNA extraction method from whole blood samples. Choosing a suitable method is still a process that requires consideration of many different factors, and more research is needed to validate choices made at facilities around the world.
Resumo:
Tiziana Ferrero-Regis, guest editor of Vol. 1, issue 3, of Intellect journal Clothing Cultures. "Welcome to the third issue of Clothing Cultures. We are honoured to have served as the guest editors for this issue. The authors in this issue explore three intersecting themes in using various methods: identity, cross-cultural encounters and everyday practices related to designing, branding and wearing clothing. These themes are at the core of fashion and dress: as an everyday individual and social project, and as a system in which people and objects (clothing) globally circulate. The performance of identity (Goffman 1979; Butler 1990), social practices and the movement of people and commodities (Appadurai 1986, 1996) create and transfer cultural meanings..."
Resumo:
Surface-enhanced Raman spectroscopy (SERS) is a potentially important tool in the rapid and accurate detection of pathogenic bacteria in biological fluids. However, for diagnostic application of this technique, it is necessary to develop a highly sensitive, stable, biocompatible and reproducible SERS-active substrate. In this work, we have developed a silver–gold bimetallic SERS surface by a simple potentiostatic electrodeposition of a thin gold layer on an electrochemically roughened nanoscopic silver substrate. The resultant substrate was very stable under atmospheric conditions and exhibited the strong Raman enhancement with the high reproducibility of the recorded SERS spectra of bacteria (E. coli, S. enterica, S. epidermidis, and B. megaterium). The coating of the antibiotic over the SERS substrate selectively captured bacteria from blood samples and also increased the Raman signal in contrast to the bare surface. Finally, we have utilized the antibiotic-coated hybrid surface to selectively identify different pathogenic bacteria, namely E. coli, S. enterica and S. epidermidis from blood samples.
Resumo:
Some perfluoroalkyl and polyfluoroalkyl substances (PFASs) have become widespread pollutants detected in human and wildlife samples worldwide. The main objective of this study was to assess temporal trends of PFAS concentrations in human blood in Australia over the last decade (2002–2011), taking into consideration age and sex trends. Pooled human sera from 2002/03 (n=26); 2008/09 (n=24) and 2010/11 (n=24) from South East Queensland, Australia were obtained from de-identified surplus pathology samples and compared with samples collected previously from 2006/07 (n=84). A total of 9775 samples in 158 pools were available for assessment of PFASs. Stratification criteria included sex and age: <16 years (2002/03 only); 0–4 (2006/07, 2008/09, 2010/11); 5–15 (2006/07, 2008/09, 2010/11); 16–30; 31–45; 46–60; and >60 years (all collection periods). Sera were analyzed using on-line solid-phase extraction coupled to high-performance liquid chromatography-isotope dilution-tandem mass spectrometry. Perfluorooctane sulfonate (PFOS) was detected in the highest concentrations ranging from 5.3–19.2 ng/ml (2008/09) to 4.4–17.4 ng/ml (2010/11). Perfluorooctanoate (PFOA) was detected in the next highest concentration ranging from 2.8–7.3 ng/ml (2008/09) to 3.1–6.5 ng/ml (2010/11). All other measured PFASs were detected at concentrations <1 ng/ml with the exception of perfluorohexane sulfonate which ranged from 1.2–5.7 ng/ml (08/09) and 1.4–5.4 ng/ml (10/11). The mean concentrations of both PFOS and PFOA in the 2010/11 period compared to 2002/03 were lower for all adult age groups by 56%. For 5-15 year olds, the decrease was 66% (PFOS) and 63% (PFOA) from 2002/03 to 2010/11. For 0-4 year olds the decrease from 2006/07 (when data were first available for this age group) was 50% (PFOS) and 22% (PFOA). This study provides strong evidence for decreasing serum PFOS and PFOA concentrations in an Australian population from 2002 through 2011. Age trends were variable and concentrations were higher in males than females. Global use has been in decline since around 2002 and hence primary exposure levels are expected to be decreasing. Further biomonitoring will allow assessment of PFAS exposures to confirm trends in exposure as primary and eventually secondary sources are depleted.
Resumo:
Blood donation is a critical part of health services with a viable blood supply underpinning an effective health program in any country. Typically blood is provided by voluntary donations from citizens and is therefore reliant on the goodwill and altruistic commitment of donors. In Australia, like many other developed nations, there are many challenges in maintaining a sufficient and sustainable blood supply. The Australian Red Cross Blood Service Donor and Community research group aim is to understand the barriers, motivations and perceptions of donors. Blood donation is a ‘people-processing’ service (Lovelock 1983, Russell-Bennett et al 2013) with the marketing exchange relating to bodily fluid rather than money and is an altruistic social service that has no direct benefit for the customer donor rather the benefit is for other people and society (Kotler and Zaltman 1971). Emotion has been shown to be a motivator and a barrier in a variety of Blood Service studies, this is a key insight that is further explored in the current study. Other key social factors that impact blood donor behavior are classified as social because they involve perceptions of other people’s beliefs and responses (such as moral or subjective norms), peer pressure, other people’s expectations and other people as a form of support. Given that emotions are social phenomena (Parkinson 1996), this study focuses on the role of other people in the blood donation process and how other people relates to the emotional experience of blood donors. We argue in this paper that overcoming emotional barriers to blood donation by leveraging the role of other people will influence low donation rates in Australia. To date, there has been little evidence in service research that identifies. In this paper we explore how other people influence the emotional experience of donors and how, donor emotions create the need for other people as a coping resource.
Resumo:
Background/Aim: Cardiotoxicity resulting in heart failure is a devastating complication of cancer therapy. It is possible that a patient may survive cancer only to develop heart failure (HF), which is more deadly than cancer. The aim of this project was to profile the characteristics of patients at risk of cancer treatment induced heart failure. Methods: Linked Health Data Analysis of Queensland Cancer Registry (QCR) from 1996-2009, Death Registry and Hospital Administration records for HF and chemotherapy admissions were reviewed. Index heart failure admission must have occurred after the date of cancer registry entry. Results: A total of 15,987 patients were included in this analysis; 1,062 (6.6%) had chemotherapy+HF admission (51.4% Female) and 14,925 (93.4%) chemotherapy_no HF admission. Median age of chemotherapy+HF patients was 67 years (IQR 58 to 75) vs. 54 years (IQR 44 to 64) for chemotherapy_no HF admission. Chemotherapy+HF patients had increased risk of all cause mortality (HR 2.79 [95% CI 2.58-3.02] and 1.67 [95% CI, 1.54 to 1.81] after adjusting for age, sex, marital status, country of birth, cancer site and chemotherapy dose). Index HF admission occurred within one year of cancer diagnosis in 47% of HF patients with 80% of patinets having there index admission with 3 years. The number of chemotherapy cycles was not associated with significant reduction in survival time in chemotherapy+HF patients. Mean survival for heart failure patients was 5.3 years (95% CI, 4.99 - 5.62) vs.9.57 years (95% CI, 9.47-9.68) for chemotherapy_no HF admission patients. Conclusion: All-cause mortality was 67% higher in patients diagnosed with HF following chemotherapy in adjusted analysis for covariates. Methods to improve and better coordinate of the interdisciplinary care for cancer patients with HF involving cardiologists and oncologists are required, including evidence-based guidelines for the comprehensive assessment, monitoring and management of this cohort.
Resumo:
Irregular atrial pressure, defective folate and cholesterol metabolism contribute to the pathogenesis of hypertension. However, little is known about the combined roles of the methylenetetrahydrofolate reductase (MTHFR), apolipoprotein-E (ApoE) and angiotensin-converting enzyme (ACE) genes, which are involved in metabolism and homeostasis. The objective of this study is to investigate the association of the MTHFR 677 C>T and 1298A>C, ACE insertion–deletion (I/D) and ApoE genetic polymorphisms with hypertension and to further explore the epistasis interactions that are involved in these mechanisms. A total of 594 subjects, including 348 normotensive and 246 hypertensive ischemic stroke subjects were recruited. The MTHFR 677 C>T and 1298A>C, ACE I/D and ApoEpolymorphisms were genotyped and the epistasis interaction were analyzed. The MTHFR 677 C>T and ApoE polymorphisms demonstrated significant associations with susceptibility to hypertension in multiple logistic regression models, multifactor dimensionality reduction and a classification and regression tree. In addition, the logistic regression model demonstrated that significant interactions between the ApoE E3E3, E2E4, E2E2 and MTHFR 677 C>T polymorphisms existed. In conclusion, the results of this epistasis study indicated significant association between the ApoE and MTHFR polymorphisms and hypertension.
Resumo:
Red blood cells (RBCs) exhibit different types of motions and deformations when the blood flows through capillaries. Interestingly, due to the complex three-dimensional structure of the RBC membrane, RBCs show three-dimensional motions and deformations in the blood flow. These motions and deformations of the RBCs highly depend on the stiffness of the RBC membrane and on the geometrical parameters of the capillary through which blood flows. However, capillaries always do not have uniform cross sections and some capillaries have stenosed segments, where cross sectional area suddenly reduces. Further, some diseases can alter the stiffness of the RBC membrane drastically. In this study, the deformation behaviour of a single three-dimensional RBC is examined, when it moves through a stenosed capillary. A three-dimensional spring network is used to model the RBC membrane. The RBC’s inside and outside fluids are discretized into a finite number of mass points and treated by smoothed particle hydrodynamics (SPH) method. The capillary is considered as a rigid tube with a stenosed section. The deformation index, mean velocity and total energy of the RBC are analysed when it flows through the stenosed capillary. Further, motion and deformation of the RBCs with different membrane stiffness (KB) are compared when they flow through the stenosed segment of the capillary. The simulation results demonstrate the RBCs are subjected to a larger deformation when they move through the stenosed part of the capillary and the RBCs with lower KBvalues easily pass through the stenosed segment of the capillary. Further, RBCs having higher KBvalues have a lower mean velocity and it leads to slow down the overall blood flow rate
Resumo:
Red blood cells (RBCs) are the most common type of cells in human blood and they exhibit different types of motions and deformed shapes in capillary flows. The behaviour of the RBCs should be studied in order to explain the RBC motion and deformation mechanism. This article presents a numerical simulation method for RBC deformation in microvessels. A two dimensional spring network model is used to represent the RBC membrane, where the elastic stretch/compression energy and the bending energy are considered with the constraint of constant RBC surface area. The forces acting on the RBC membrane are obtained from the principle of virtual work. The whole fluid domain is discretized into a finite number of particles using smoothed particle hydrodynamics concepts and the motions of all the particles are solved using Navier--Stokes equations. Minimum energy concepts are used to simulate the deformed shape of the RBC model. To verify the model, the motion of a single RBC is simulated in a Poiseuille flow and the characteristic parachute shape of the RBC is observed. Further simulations reveal that the RBC shows a tank treading motion when it flows in a linear shear flow.
Resumo:
Red blood cells (RBCs) are nonnucleated liquid capsules, enclosed in deformable viscoelastic membranes with complex three dimensional geometrical structures. Generally, RBC membranes are highly incompressible and resistant to areal changes. However, RBC membranes show a planar shear deformation and out of plane bending deformation. The behaviour of RBCs in blood vessels is investigated using numerical models. All the characteristics of RBC membranes should be addressed to develop a more accurate and stable model. This article presents an effective methodology to model the three dimensional geometry of the RBC membrane with the aid of commercial software COMSOL Multiphysics 4.2a and Fortran programming. Initially, a mesh is generated for a sphere using the COMSOL Multiphysics software to represent the RBC membrane. The elastic energy of the membrane is considered to determine a stable membrane shape. Then, the actual biconcave shape of the membrane is obtained based on the principle of virtual work, when the total energy is minimised. The geometry of the RBC membrane could be used with meshfree particle methods to simulate motion and deformation of RBCs in micro-capillaries
Resumo:
Urban morphology as a field of study has developed primarily in Europe and North America, and more recently emerging as a recurrent topic in China and South America. As a counterpoint to this centric view, the ISUF 2013 conference explored aspects of ‘urban form at the edge’. In particular the conference examined ‘off centre areas’ such as India, Africa, Middle East, Central Asia and Australasia which require innovative approaches to the study of traditional, as well as post-colonial and contemporary, morphologies. Broader interpretations of urban form at the edge focus on minor centres and suburbia, with their developing and transilient character; edge cities and regional centres; and new technologies and approaches that are developing alongside established methods, tools and theories of urban morphology...
Resumo:
Objectives To estimate the burden of disease attributable to high blood pressure (BP) in adults aged 30 years and older in South Africa in 2000. Design World Health Organization comparative risk assessment (CRA) methodology was followed. Mean systolic BP (SBP) estimates by age and sex were obtained from the 1998 South African Demographic and Health Survey adult data. Population-attributable fractions were calculated and applied to revised burden of disease estimates for the relevant disease categories for South Africa in 2000. Monte Carlo simulation modelling techniques were used for uncertainty analysis. Setting South Africa Subjects Adults aged 30 years and older. Outcome measures Mortality and disability-adjusted life years (DALYs) from ischaemic heart disease (IHD), stroke, hypertensive disease and other cardiovascular disease (CVD). Results High BP was estimated to have caused 46 888 deaths (95% uncertainty interval 44 878 - 48 566) or 9% (95% uncertainty interval 8.6 - 9.3%) of all deaths in South Africa in 2000, and 390 860 DALYs (95% uncertainty interval 377 955 - 402 256) or 2.4% of all DALYs (95% uncertainty interval 2.3 - 2.5%) in South Africa in 2000. Overall, 50% of stroke, 42% of IHD, 72% of hypertensive disease and 22% of other CVD burden in adult males and females (30+ years) were attributable to high BP (systolic BP ≥ 115 mmHg). Conclusions High BP contributes to a considerable burden of CVD in South Africa and results indicate that there is considerable potential for health gain from implementing BP-lowering interventions that are known to be highly costeffective.
Antibodies against human herpesvirus 8 in South African renal transplant recipients and blood donors