354 resultados para Avian infectious bronchitis
Resumo:
It has been postulated that susceptible individuals may acquire infection with nontuberculous mycobacteria (NTM) from water and aerosol exposure. This study examined household water and shower aerosols of patients with NTM pulmonary disease. The mycobacteria isolated from clinical samples from 20 patients included M. avium (5 patients), M. intracellulare (12 patients), M. abscessus (7 patients), M. gordonae (1 patient), M. lentiflavum (1 patient), M. fortuitum (1 patient), M. peregrinum (1 patient), M. chelonae (1 patient), M. triplex (1 patient), and M. kansasii (1 patient). One-liter water samples and swabs were collected from all taps, and swimming pools or rainwater tanks. Shower aerosols were sampled using Andersen six-stage cascade impactors. For a subgroup of patients, real-time PCR was performed and high-resolution melt profiles were compared to those of ATCC control strains. Pathogenic mycobacteria were isolated from 19 homes. Species identified in the home matched that found in the patient in seven (35%) cases: M. abscessus (3 cases), M. avium (1 case), M. gordonae (1 case), M. lentiflavum (1 case), and M. kansasii (1 case). In an additional patient with M. abscessus infection, this species was isolated from potable water supplying her home. NTM grown from aerosols included M. abscessus (3 homes), M. gordonae (2 homes), M. kansasii (1 home), M. fortuitum complex (4 homes), M. mucogenicum (1 home), and M. wolinskyi (1 home). NTM causing human disease can be isolated from household water and aerosols. The evidence appears strongest for M. avium, M. kansasii, M. lentiflavum, and M. abscessus. Despite a predominance of disease due to M. intracellulare, we found no evidence for acquisition of infection from household water for this species.
Resumo:
Objective To describe the changing prevalence of healthcare- and community-associated MRSA. Methods Susceptibility phenotypes of MRSA were observed from 2000 to 2012 using routine susceptibility data. Phenotypic definitions of major clones were validated by genotyping isolates from a nested period prevalence survey in 2011. Results The predominant healthcare-associated (AUS-2/3 like) MRSA phenotype decreased from 42 to 14 isolates per million occasions of service in outpatients (P < 0.0001) and from 650 to 75 isolates per million accrued patient days in inpatients (P 0.0005), while the respective rates of the healthcare-related EMRSA-15 like phenotype increased from 1 to 19 in outpatients (P < 0.0001) and from 11 to 83 in inpatients (P < 0.0001) and those of the community-associated MRSA phenotype increased from 17 to 296 in outpatients (P < 0.0001) and from 71 to 486 in inpatients (P < 0.0001). When compared with single nucleotide polymorphism genotyping the AUS-2/3 like phenotype had a sensitivity and positive predictive value (PPV) for CC239 of 1 and 0.791 respectively, while the EMRSA-15 like phenotype had a sensitivity and PPV for CC22 of 0.903 and 0.774. PVL-positive CA-MRSA, predominantly ST93 and CC30, accounted for 60.8% of MRSA, while PVL-negative CA-MRSA, mainly CC5 and CC1, accounted for 21.4%. Conclusions The initially dominant healthcare-associated MRSA clone has been progressively replaced, mainly by four community-associated lineages.
Resumo:
AIMS: To investigate the evolutionary origins of Australian healthcare-associated (HCA) methicillin-resistant Staphylococcus aureus (MRSA) strains from a panel of historical isolates typed using current genotyping techniques. METHODS: Nineteen MRSA isolates from 1965 to 1981 were examined and antibiotic susceptibility profiles determined. Genetic characterisation included real-time (RT) polymerase chain reaction (PCR) assays to identify single nucleotide polymorhpism (SNP) clonal complexes (SNP CC) and sequence type (SNP ST), multi locus sequence typing (MLST) and staphylococcal chromosomal cassette mec typing. RESULTS: All SNP CC30 isolates belonged to a novel sequence type, ST2249. All SNP CC239 isolates were confirmed as ST239-MRSA-III, except for a new single locus variant of ST239, ST2275. A further new type, ST2276, was identified. CONCLUSIONS: The earliest MRSA examined from 1965 was confirmed as ST250-MRSA-I, consistent with archaic European types. Identification of ST1-MRSA-IV in 1981 is the earliest appearance of this clinically important lineage which manifested in Australia and the United States in the 1990s. A previously unknown multi-resistant clone, ST2249-MRSA-III, was identified from 1973. Gentamicin resistance first appeared in this novel strain from 1976 and not ST239 as previously suspected. Thus, ST2249 was present in the earliest phase of the HCA MRSA epidemic in eastern Australia and was perhaps related to the emergence of the globally epidemic strain ST239.
Resumo:
In vivo confocal microscopy (IVCM) is an emerging technology that provides minimally invasive, high resolution, steady-state assessment of the ocular surface at the cellular level. Several challenges still remain but, at present, IVCM may be considered a promising technique for clinical diagnosis and management. This mini-review summarizes some key findings in IVCM of the ocular surface, focusing on recent and promising attempts to move “from bench to bedside”. IVCM allows prompt diagnosis, disease course follow-up, and management of potentially blinding atypical forms of infectious processes, such as acanthamoeba and fungal keratitis. This technology has improved our knowledge of corneal alterations and some of the processes that affect the visual outcome after lamellar keratoplasty and excimer keratorefractive surgery. In dry eye disease, IVCM has provided new information on the whole-ocular surface morphofunctional unit. It has also improved understanding of pathophysiologic mechanisms and helped in the assessment of prognosis and treatment. IVCM is particularly useful in the study of corneal nerves, enabling description of the morphology, density, and disease- or surgically induced alterations of nerves, particularly the subbasal nerve plexus. In glaucoma, IVCM constitutes an important aid to evaluate filtering blebs, to better understand the conjunctival wound healing process, and to assess corneal changes induced by topical antiglaucoma medications and their preservatives. IVCM has significantly enhanced our understanding of the ocular response to contact lens wear. It has provided new perspectives at a cellular level on a wide range of contact lens complications, revealing findings that were not previously possible to image in the living human eye. The final section of this mini-review provides a focus on advances in confocal microscopy imaging. These include 2D wide-field mapping, 3D reconstruction of the cornea and automated image analysis.
Resumo:
It was Dvorak in 1986 that postulated 'tumours are wounds that do not heal' as they share common cellular and molecular mechanisms, which are active in both wounds and in cancer tissue. Inflammation is a crucial part of the innate immune system that protects against pathogens and initiates adaptive immunity. Acute inflammation is usually a rapid and self-limiting process, however it does not always resolve. This leads to the establishment of a chronic inflammatory state and provides the perfect environment for carcinogenesis. Inflammation and cancer have long had an association, going back as far as Virchow in 1863, when leucocytes were noted in neoplastic tissue. It has been estimated that approximately 25% of all malignancies are initiated or exacerbated by inflammation caused by infectious agents. Furthermore, inflammation is linked to all of the six hallmarks of cancer (evasion of apoptosis, insensitivity to anti-growth signals, unlimited replicative potential, angiogenesis, increase in survival factors and invasion and metastasis). It is thought that inflammation may play a critical role in lung carcinogenesis given that individuals with inflammatory lung conditions have an increased risk of lung cancer development. Cigarette smoking can also induce inflammation in the lung and smokers are at a higher risk of developing lung cancer than non-smokers. However, exposure to a number of environmental agents such as radon, have also been demonstrated as a causative factor in this disease. This chapter will focus on inflammation as a contributory factor in non small cell lung cancer (NSCLC), concentrating primarily on the pathological involvement of the pro-inflammatory cytokines, TNF-α, IL-1β, and the CXC (ELR+) chemokine family. Targeting of inflammatory mediators will also be discussed as a therapeutic strategy in this disease. © 2013 by Nova Science Publishers, Inc. All rights reserved.
Resumo:
Debilitating infectious diseases caused by Chlamydia are major contributors to the decline of Australia's iconic native marsupial species, the koala (Phascolarctos cinereus). An understanding of koala chlamydial disease pathogenesis and the development of effective strategies to control infections continue to be hindered by an almost complete lack of species-specific immunological reagents. The cell-mediated immune response has been shown to play an influential role in the response to chlamydial infection in other hosts. The objective of this study, hence, was to provide preliminary data on the role of two key cytokines, pro-inflammatory tumour necrosis factor alpha (TNFα) and anti-inflammatory interleukin 10 (IL10), in the koala Chlamydia pecorum response. Utilising sequence homology between the cytokine sequences obtained from several recently sequenced marsupial genomes, this report describes the first mRNA sequences of any koala cytokine and the development of koala specific TNFα and IL10 real-time PCR assays to measure the expression of these genes from koala samples. In preliminary studies comparing wild koalas with overt chlamydial disease, previous evidence of C. pecorum infection or no signs of C. pecorum infection, we revealed strong but variable expression of TNFα and IL10 in wild koalas with current signs of chlamydiosis. The description of these assays and the preliminary data on the cell-mediated immune response of koalas to chlamydial infection paves the way for future studies characterising the koala immune response to a range of its pathogens while providing reagents to assist with measuring the efficacy of ongoing attempts to develop a koala chlamydial vaccine.
Resumo:
SIC and DRS are related proteins present in only four of the more than 200 Streptococcus pyogenes emm-types. These proteins inhibit complement mediated lysis and/or the activity of certain antimicrobial peptides. A gene encoding a homologue of these proteins, herein called DrsG, has been identified in the related bacterium Streptococcus dysgalactiae subsp equisimilis (SDSE). Here we show that geographically dispersed isolates representing 14 of 50 emm-types examined possess variants of drsG. However not all isolates within the drsG-positive emm-types possess the gene. Sequence comparisons also reveal a high degree of conservation in different SDSE emm-types. To examine the biological activity of DrsG, recombinant versions of two major DrsG variants, DrsGS and DrsGL, were expressed and purified. Western blot analysis using antisera raised to these proteins demonstrated both variants to be expressed and secreted into culture supernatant. Unlike SIC, but similar to DRS, DrsG does not inhibit complement mediated lysis. However, like both SIC and DRS, DrsG is a ligand of the cathelcidin LL-37 and is inhibitory to its bactericidal activity in in vitro assays. The greatest similarity between DrsG and DRS/SIC is found in the signal sequence at the amino terminus and proline rich domains in the C-terminal half of the protein. Conservation of prolines in this latter region also suggests these residues are important in the biology of this family of proteins. This is the first report demonstrating the activity of an AMP inhibitory protein in SDSE. These results also suggest that inhibition of AMP activity is the primary function of this family of proteins. The acquisition of complement inhibitory activity of SIC may reflect its continuing evolution.
Resumo:
Chlamydial infection in koalas is common across the east coast of Australia and causes significant morbidity, infertility and mortality. An effective vaccine to prevent the adverse consequences of chlamydial infections in koalas (particularly blindness and infertility in females) would provide an important management tool to prevent further population decline of this species. An important step towards developing a vaccine in koalas is to understand the host immune response to chlamydial infection. In this study, we used the Pepscan methodology to identify B cell epitopes across the Major Outer Membrane Protein (MOMP) of four C. pecorum strains/genotypes that are recognized, either following (a) natural live infection or (b) administration of a recombinant MOMP vaccine. Plasma antibodies from the koalas naturally infected with a C. pecorum G genotype strain recognised the epitopes located in the variable domain (VD) four of MOMP G and also VD4 of MOMP H. By comparison, plasma antibodies from an animal infected with a C. pecorum F genotype strain recognised epitopes in VD1, 2 and 4 of MOMP F, but not from other genotype MOMPs. When Chlamydia-free koalas were immunised with recombinant MOMP protein they produced antibodies not only against epitopes in the VDs but also in conserved domains of MOMP. Naturally infected koalas immunised with recombinant MOMP protein also produced antibodies against epitopes in the conserved domains. This work paves the way for further refinement of a MOMP-based Chlamydia vaccine that will offer wide cross-protection against the variety of chlamydial infections circulating in wild koala populations.
Resumo:
Six consecutively hatched cohorts and one cohort of pre-hatch eggs of farmed barramundi (Lates calcarifer) from south Australia were examined for Chlamydia-like organisms associated with epitheliocystis. To identify and characterise the bacteria, 59 gill samples and three pre-hatch egg samples were processed for histology, in situ hybridisation and 16S rRNA amplification, sequencing and comprehensive phylogenetic analysis. Cases of epitheliocystis were observed microscopically and characterised by membrane-enclosed basophilic cysts filled with a granular material that caused hypertrophy of the epithelial cells. In situ hybridisation with a Chlamydiales-specific probe lead to specific labelling of the epitheliocystis inclusions within the gill epithelium. Two distinct but closely related 16S rRNA chlamydial sequences were amplified from gill DNA across the seven cohorts, including from pre-hatch eggs. These genotype sequences were found to be novel, sharing 97.1 - 97.5% similarity to the next closest 16S rRNA sequence, Ca. Similichlamydia latridicola, from Australian striped trumpeter. Comprehensive phylogenetic analysis of these genotype sequences against representative members of the Chlamydiales order and against other epitheliocystis agents revealed these Chlamydia-like organisms to be novel and taxonomically placed them within the recently proposed genus Ca. Similichlamydia. Following Fredricks and Relman's molecular postulates and based on these observations, we propose the epitheliocystis agents of barramundi to be known as "Candidatus Similichlamydia laticola" (sp. nov.).
Resumo:
Chlamydiosis is a significant factor contributing to the decline of koala (Phascolarctos cinereus) populations in Australia but has not previously been reported in South Australia. We describe conjunctivitis in three wild koalas from South Australia, with Chlamydia pecorum identified by quantitative PCR.
Resumo:
Dengue is the most prevalent arthropod-borne virus, with at least 40% of the world’s population at risk of infection each year. In Australia, dengue is not endemic, but viremic travelers trigger outbreaks involving hundreds of cases. We compared the susceptibility of Aedes aegypti mosquitoes from two geographically isolated populations with two strains of dengue virus serotype 2. We found, interestingly, that mosquitoes from a city with no history of dengue were more susceptible to virus than mosquitoes from an outbreak-prone region, particularly with respect to one dengue strain. These findings suggest recent evolution of population-based differences in vector competence or different historical origins. Future genomic comparisons of these populations could reveal the genetic basis of vector competence and the relative role of selection and stochastic processes in shaping their differences. Lastly, we show the novel finding of a correlation between midgut dengue titer and titer in tissues colonized after dissemination.
Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia
Resumo:
Introduction Dengue is one of the most widespread mosquito-borne diseases in the world. The causative agent, dengue virus (DENV), is primarily transmitted by the mosquito Aedes aegypti, a species that has proved difficult to control using conventional methods. The discovery that A. aegypti transinfected with the wMel strain of Wolbachia showed limited DENV replication led to trial field releases of these mosquitoes in Cairns, Australia as a biocontrol strategy for the virus. Methodology/Principal Findings Field collected wMel mosquitoes that were challenged with three DENV serotypes displayed limited rates of body infection, viral replication and dissemination to the head compared to uninfected controls. Rates of dengue infection, replication and dissemination in field wMel mosquitoes were similar to those observed in the original transinfected wMel line that had been maintained in the laboratory. We found that wMel was distributed in similar body tissues in field mosquitoes as in laboratory ones, but, at seven days following blood-feeding, wMel densities increased to a greater extent in field mosquitoes. Conclusions/Significance Our results indicate that virus-blocking is likely to persist in Wolbachia-infected mosquitoes after their release and establishment in wild populations, suggesting that Wolbachia biocontrol may be a successful strategy for reducing dengue transmission in the field.
Resumo:
Background Children are particularly vulnerable to the effects of extreme temperatures. Objective To examine the relationship between extreme temperatures and paediatric emergency department admissions (EDAs) in Brisbane, Australia, during 2003–2009. Methods A quasi-Poisson generalised linear model combined with a distributed lag non-linear model was used to examine the relationships between extreme temperatures and age-, gender- and cause-specific paediatric EDAs, while controlling for air pollution, relative humidity, day of the week, influenza epidemics, public holiday, season and long-term trends. The model residuals were checked to identify whether there was an added effect due to heat waves or cold spells. Results There were 131 249 EDAs among children during the study period. Both high (RR=1.27; 95% CI 1.12 to 1.44) and low (RR=1.81; 95% CI 1.66 to 1.97) temperatures were significantly associated with an increase in paediatric EDAs in Brisbane. Male children were more vulnerable to temperature effects. Children aged 0–4 years were more vulnerable to heat effects and children aged 10–14 years were more sensitive to both hot and cold effects. High temperatures had a significant impact on several paediatric diseases, including intestinal infectious diseases, respiratory diseases, endocrine, nutritional and metabolic diseases, nervous system diseases and chronic lower respiratory diseases. Low temperatures were significantly associated with intestinal infectious diseases, respiratory diseases and endocrine, nutritional and metabolic diseases. An added effect of heat waves on childhood chronic lower respiratory diseases was seen, but no added effect of cold spells was found. Conclusions As climate change continues, children are at particular risk of a variety of diseases which might be triggered by extremely high temperatures. This study suggests that preventing the effects of extreme temperature on children with respiratory diseases might reduce the number of EDAs.
Resumo:
Children are vulnerable to temperature extremes. This paper aimed to review the literature regarding the relationship between ambient temperature and children’s health and to propose future research directions. A literature search was conducted in February 2012 using the databases including PubMed, ProQuest, ScienceDirect, Scopus and Web of Science. Empirical studies regarding the impact of ambient temperature on children’s mortality and morbidity were included. The existing literature indicates that very young children, especially children under one year of age, are particularly vulnerable to heat-related deaths. Hot and cold temperatures mainly affect cases of infectious diseases among children, including gastrointestinal diseases, malaria, hand, foot and mouse disease, and respiratory diseases. Paediatric allergic diseases, like eczema, are also sensitive to temperature extremes. During heat waves, the incidences of renal disease, fever and electrolyte imbalance among children increase significantly. Future research is needed to examine the balance between hot- and cold-temperature related mortality and morbidity among children; evaluate the impacts of cold spells on cause-specific mortality in children; identify the most sensitive temperature exposure and health outcomes to quantify the impact of temperature extremes on children; elucidate the possible modifiers of the temperature and children’s health relationship; and project children’s disease burden under different climate change scenarios.
Resumo:
Climate change is affecting and will increasingly influence human health and wellbeing. Children are particularly vulnerable to the impact of climate change. An extensive literature review regarding the impact of climate change on children’s health was conducted in April 2012 by searching electronic databases PubMed, Scopus, ProQuest, ScienceDirect, and Web of Science, as well as relevant websites, such as IPCC and WHO. Climate change affects children’s health through increased air pollution, more weather-related disasters, more frequent and intense heat waves, decreased water quality and quantity, food shortage and greater exposure to toxicants. As a result, children experience greater risk of mental disorders, malnutrition, infectious diseases, allergic diseases and respiratory diseases. Mitigation measures like reducing carbon pollution emissions, and adaptation measures such as early warning systems and post-disaster counseling are strongly needed. Future health research directions should focus on: (1) identifying whether climate change impacts on children will be modified by gender, age and socioeconomic status; (2) refining outcome measures of children’s vulnerability to climate change; (3) projecting children’s disease burden under climate change scenarios; (4) exploring children’s disease burden related to climate change in low-income countries, and ; (5) identifying the most cost-effective mitigation and adaptation actions from a children’s health perspective.