296 resultados para AXIAL CHIRALITY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of estrogen deficiency on bone characteristics are site-dependent, with the most commonly studied sites being appendicular long bones (proximal femur and tibia) and axial bones (vertebra). The effect on the maxillary and mandibular bones is still inconsistent and requires further investigation. This study was designed to evaluate bone quality in the posterior maxilla of ovariectomized rats in order to validate this site as an appropriate model to study the effect of osteoporotic changes. Methods: Forty-eight 3-month-old female Sprague-Dawley rats were randomly divided into two groups: an ovariectomized group (OVX, n=24) and Sham-operated group (SHAM, n=24). Six rats were randomly sacrificed from both groups at time points 8, 12, 16 and 20 weeks. The samples from tibia and maxilla were collected for Micro CT and histological analysis. For the maxilla, the volume of interest (VOI) area focused on the furcation areas of the first and second molar. Trabecular bone volume fraction (BV/TV, %), trabecular thickness (Tb.Th.), trabecular number (Tb.N.), trabecular separation (Tb.Sp.), and connectivity density (Conn.Dens) were analysed after Micro CT scanning. Results: At 8 weeks the indices BV/TV, Tb.Sp, Tb.N and Conn.Dens showed significant differences (P<0.05) between the OVX and SHAM groups in the tibia. Compared with the tibia, the maxilla developed osteoporosis at a later stage, with significant changes in maxillary bone density only occurring after 12 weeks. Compared with the SHAM group, both the first and second molars of the OVX group showed significantly decreased BV/TV values from 12 weeks, and these changes were sustained through 16 and 20 weeks. For Tb.Sp, there were significant increases in bone values for the OVX group compared with the SHAM group at 12, 16 and 20 weeks. Histological changes were highly consistent with Micro CT results. Conclusion: This study established a method to quantify the changes of intra-radicular alveolar bone in the posterior maxilla in an accepted rat osteoporosis model. The degree of the osteoporotic changes to trabecular bone architecture is site-dependent and at least 3 months are required for the osteoporotic effects to be apparent in the posterior maxilla following rat OVX.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Footwear remains a prime candidate for the prevention and rehabilitation of Achilles tendinopathy as it is thought to decrease tension in the tendon through elevation of the heel. However, evidence for this effect is equivocal. Purpose: This study used an acoustic transmission technique to investigate the effect of running shoes on Achilles tendon loading during barefoot and shod walking. Methods: Acoustic velocity was measured in the Achilles tendon of twelve recreationally–active males (age, 31±9 years; height, 1.78±0.06 m; weight, 81.0±16.9 kg) during barefoot and shod walking at matched self–selected speed (3.4±0.7 km/h). Standard running shoes incorporating a 10– mm heel offset were used. Vertical ground reaction force and spatiotemporal parameters were determined with an instrumented treadmill. Axial acoustic velocity in the Achilles tendon was measured using a custom built ultrasonic device. All data were acquired at a rate of 100 Hz during 10s of steady–state walking. Statistical comparisons between barefoot and shod conditions were made using paired t–tests and repeated measure ANOVAs. Results: Acoustic velocity in the Achilles tendon was highly reproducible and was typified by two maxima (P1, P2) and minima (M1, M2) during walking. Footwear resulted in a significant increase in step length, stance duration and peak vertical ground reaction force compared to barefoot walking. Peak acoustic velocity in the Achilles tendon (P1, P2) was significantly higher with running shoes. Conclusions: Peak acoustic velocity in the Achilles tendon was higher with footwear, suggesting that standard running shoes with a 10–mm heel offset increase tensile load in the Achilles tendon. Although further research is required, these findings question the therapeutic role of standard running shoes in Achilles tendinopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research was a step forward in investigating the characteristics of recycled concrete aggregates to use as an unbound pavement material. The results present the guidelines for successfully application of recycled concrete aggregates in high traffic volume roads. Outcomes of the research create more economical and environmental benefits through reducing the depletion of natural resources and effectively manage the generated concrete waste before disposal as land fill.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Problem addressed Wrist-worn accelerometers are associated with greater compliance. However, validated algorithms for predicting activity type from wrist-worn accelerometer data are lacking. This study compared the activity recognition rates of an activity classifier trained on acceleration signal collected on the wrist and hip. Methodology 52 children and adolescents (mean age 13.7 +/- 3.1 year) completed 12 activity trials that were categorized into 7 activity classes: lying down, sitting, standing, walking, running, basketball, and dancing. During each trial, participants wore an ActiGraph GT3X+ tri-axial accelerometer on the right hip and the non-dominant wrist. Features were extracted from 10-s windows and inputted into a regularized logistic regression model using R (Glmnet + L1). Results Classification accuracy for the hip and wrist was 91.0% +/- 3.1% and 88.4% +/- 3.0%, respectively. The hip model exhibited excellent classification accuracy for sitting (91.3%), standing (95.8%), walking (95.8%), and running (96.8%); acceptable classification accuracy for lying down (88.3%) and basketball (81.9%); and modest accuracy for dance (64.1%). The wrist model exhibited excellent classification accuracy for sitting (93.0%), standing (91.7%), and walking (95.8%); acceptable classification accuracy for basketball (86.0%); and modest accuracy for running (78.8%), lying down (74.6%) and dance (69.4%). Potential Impact Both the hip and wrist algorithms achieved acceptable classification accuracy, allowing researchers to use either placement for activity recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Importance Myopia is a significant public health problem, making it important to determine whether a bifocal spectacle treatment involving near prism slows myopia progression in children. Objective To determine whether bifocal and prismatic bifocal spectacles control myopia in children with high rates of myopia progression and to assess whether the treatment effect is dependent on the lag of accommodation and/or near phoria status. Design, Setting, and Participants This 3-year randomized clinical trial was conducted in a private practice. A total of 135 (73 female and 62 male) Chinese-Canadian children (aged 8-13 years; mean [SE] age, 10.29 [0.15] years; mean [SE] myopia, −3.08 [0.10] D) with myopia progression of at least 0.50 D in the preceding year were randomly assigned to 1 of 3 treatments. A total of 128 (94.8%) completed the trial. Interventions Single-vision lenses (control, n = 41), +1.50-D executive bifocals (n = 48), and +1.50-D executive bifocals with 3-Δ base-in prism in the near segment of each lens (n = 46). Main Outcomes and Measures Myopia progression (primary) measured using an automated refractor following cycloplegia and increase in axial length (secondary) measured using ultrasonography at intervals of 6 months for 36 months. Results Myopia progression over 3 years was an average (SE) of −2.06 (0.13) D for the single-vision lens group, −1.25 (0.10) D for the bifocal group, and −1.01 (0.13) D for the prismatic bifocal group. Axial length increased an average (SE) of 0.82 (0.05) mm, 0.57 (0.07) mm, and 0.54 (0.06) mm, respectively. The treatment effect of bifocals (0.81 D) and prismatic bifocals (1.05 D) was significant (P < .001). Both bifocal groups had less axial elongation (0.25 mm and 0.28 mm, respectively) than the single-vision lens group (P < .001). For children with high lags of accommodation (≥1.01 D), the treatment effect of both bifocals and prismatic bifocals was similar (1.1 D) (P < .001). For children with low lags (<1.01 D), the treatment effect of prismatic bifocals (0.99 D) was greater than of bifocals (0.50 D) (P = .03). The treatment effect of both bifocals and prismatic bifocals was independent of the near phoria status. Conclusions and Relevance Bifocal spectacles can slow myopia progression in children with an annual progression rate of at least 0.50 D after 3 years. These results suggest that prismatic bifocals are more effective for myopic children with low lags of accommodation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose To investigate the effects of the relatively selective GABAAOr receptor antagonist (1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA) on form-deprivation myopia (FDM) in guinea pigs. Methods A diffuser was applied monocularly to 30 guinea pigs from day 10 to 21. The animals were randomized to one of five treatment groups. The deprived eye received daily sub-conjunctival injections of 100 μl TPMPA at a concentration of (i) 0.03 %, ( ii) 0.3 %, or (iii) 1 %, a fourth group (iv) received saline injections, and another (v) no injections. The fellow eye was left untreated. An additional group received no treatment to either eye. Prior to and at the end of the treatment period, refraction and ocular biometry were performed. Results Visual deprivation produced relative myopia in all groups (treated versus untreated eyes, P < 0.05). The amount of myopia was significantly affected by the drug treatment (one-way ANOVA, P < 0.0001); myopia was less in deprived eyes receiving either 0.3 % or 1 % TPMPA (saline = −4.38 ± 0.57D, 0.3 % TPMPA = −3.00 ± 0.48D, P < 0.01; 1 % TPMPA = −0.88 ± 0.51D, P < 0.001). The degree of axial elongation was correspondingly less (saline = 0.13 ± 0.02 mm, 0.3 % TPMPA = 0.09 ± 0.01 mm, P < 0.01, 1 % TPMPA = 0.02 ± 0.01 mm, P < 0.001) as was the VC elongation (saline = 0.08 ± 0.01 mm, 0.3 % TPMPA = 0.05 ± 0.01 mm, P < 0.01, 1 % TPMPA = 0.01 ± 0.01 mm; P < 0.001). ACD and LT were not affected (one-way ANOVA, P > 0.05). One percent TPMPA was more effective at inhibiting myopia than 0.3 % (P < 0.01), and 0.03 % did not appreciably inhibit the myopia (0.03 % TPMPA versus saline, P > 0.05). Conclusions Sub-conjunctival injections of TPMPA inhibit FDM in guinea pig models in a dose-dependent manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strengthening of metallic structures using carbon fibre reinforced polymer (CFRP) has become a smart strengthening option over the conventional strengthening method. Transverse impact loading due to accidental vehicular collision can lead to the failure of existing steel hollow tubular columns. However, knowledge is very limited on the behaviour of CFRP strengthened steel members under dynamic impact loading condition. This paper deals with the numerical simulation of CFRP strengthened square hollow section (SHS) steel columns under transverse impact loading to predict the behaviour and failure modes. The transverse impact loading is simulated using finite element (FE) analysis based on numerical approach. The accuracy of the FE modelling is ensured by comparing the predicted results with available experimental tests. The effects of impact velocity, impact mass, support condition, axial loading and CFRP thickness are examined through detail parametric study. The impact simulation results indicate that the strengthening technique shows an improved impact resistance capacity by reducing lateral displacement of the strengthened column about 58% compared to the bare steel column. Axial loading plays an important role on the failure behaviour of tubular column.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the mechanical properties of sodium titanate nanowires (Na2Ti3O7 NW) through a combination of bending experiments and theoretical analysis. Na2Ti3O7 NWs with lateral dimensions ranging from 20–700 nm were synthesized by a hydrothermal approach. A focused ion beam (FIB) was used to manipulate the selected Na2Ti3O7 NW over a hole drilled in an indium tin oxide substrate. After welding the nanowire, a series of bending tests was performed. It was observed that the Na2Ti3O7 NW exhibits a brittle behavior, and a nonlinear elastic deformation was observed before failure. By using the modified Euler–Bernoulli beam theory, such nonlinear elastic deformation is found to originate from a combination of surface effects and axial elongation (arising from the bending deformation). The effective Young's modulus of the Na2Ti3O7 NW was found to be independent of the wire length, and ranges from 21.4 GPa to 45.5 GPa, with an average value of 33 ± 7 GPa. The yield strength of the Na2Ti3O7 NW is measured at 2.7 ± 0.7 GPa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human choroid is capable of rapidly changing its thickness in response to a variety of stimuli. However little is known about the role of the autonomic nervous system in the regulation of the thickness of the choroid. Therefore, we investigated the effect of topical parasympatholytic and sympathomimetic agents upon the choroidal thickness and ocular biometrics of young healthy adult subjects. Fourteen subjects (mean age 27.9 ± 4 years) participated in this randomized, single-masked, placebo-controlled study. Each subject had measurements of choroidal thickness (ChT) and ocular biometrics of their right eye taken before, and then 30 and 60 min following the administration of topical pharmacological agents. Three different drugs: 2% homatropine hydrobromide, 2.5% phenylephrine hydrochloride and a placebo (0.3% hydroxypropyl methylcellulose) were tested in all subjects; each on different days (at the same time of the day) in randomized order. Participants were masked to the pharmacological agent being used at each testing session. The instillation of 2% homatropine resulted in a small but significant increase in subfoveal ChT at 30 and 60 min after drug instillation (mean change 7 ± 3 μm and 14 ± 2 μm respectively; both p < 0.0001). The parafoveal choroid also exhibited a similar magnitude, significant increase in thickness with time after 2% homatropine (p < 0.001), with a mean change of 7 ± 0.3 μm and 13 ± 1 μm (in the region located 0.5 mm from the fovea center), 6 ± 1 μm and 12.5 ± 1 μm (1 mm from the fovea center) and 6 ± 2 μm and 12 ± 2 μm (1.5 mm from the fovea center) after 30 and 60 min respectively. Axial length decreased significantly 60 min after homatropine (p < 0.01). There were also significant changes in lens thickness (LT) and anterior chamber depth (ACD) (p < 0.05) associated with homatropine instillation. No significant changes in choroidal thickness, or ocular biometrics were found after 2.5% phenylephrine or placebo at any examination points (p > 0.05). In human subjects, significant increases in subfoveal and parafoveal choroidal thickness occurred after administration of 2% homatropine and this implies an involvement of the parasympathetic system in the control of choroidal thickness in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To estimate refractive indices used with the Lenstar biometer. Methods: Axial lengths of model eyes were determined using an IOLMaster biometer and a Lenstar; comparing these lengths gave an overall eye index for the Lenstar. Using the Lenstar Graphical User interface, we determined that boundaries between media could be manipulated so that there were opposite changes in optical pathlength on either side of the boundary and specified changes in distances determined the ratios of media indices. These ratios were combined with the overall eye index to estimate indices. Results: The IOLMaster and Lenstar produced axial length estimates to within ±0.01 mm. Estimations of group refractive indices were 1.340, 1.341, 1.415 and 1.354 for cornea, aqueous, lens and overall eye, respectively. The aqueous and lens indices, but not those for the cornea, are similar to schematic eye indices and reasonable lens indices. Conclusion: The Lenstar appears to use different refractive indices for different ocular media.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerically computed engine performance of a nominally two-dimensional radical farming scramjet with porous (permeable C/C ceramic) and porthole fuel injection is presented. Inflow conditions with Mach number, stagnation pressure, and enthalpy of 6.44, 40.2MPa, and 4.31 MJ/kg respectively, and fuel/air equivalence ratio of 0.44 were maintained, along with engine geometry. Hydrogen fuel was injected at an axial location of 92.33mm downstream of the leading edge for each investigated injection method. Results from this study show that porous fuel injection results in enhanced mixing and combustion compared to porthole fuel injection. This is particularly evident within the first half of the combustion chamber where porous fuel injection resulted in mixing and combustion efficiencies of 76% and 63% respectively. At the same location, porthole fuel injection resulted in efficiencies respectively of 58% and 46%. Key mechanisms contributing to the observed improved performance were the formation of an attached oblique fuel injection shock and associated stronger shock-expansion train ingested by the engine, enhanced spreading of the fuel in all directions and a more rapidly growing mixing layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is growing interest in the biomechanics of ‘fusionless’ implant constructs used for deformity correction in the thoracic spine, however, there are questions over the comparability of in vitro biomechanical studies from different research groups due to the various methods used for specimen preparation, testing and data collection. The aim of this study was to identify the effect of two key factors on the stiffness of immature bovine thoracic spine motion segments: (i) repeated cyclic loading and (ii) multiple freeze-thaw cycles, to aid in the planning and interpretation of in vitro studies. Two groups of thoracic spine motion segments from 6-8 week old calves were tested in flexion/extension, right/left lateral bending, and right/left axial rotation under moment control. Group (A) were tested with continuous repeated cyclic loading for 500 cycles with data recorded at cycles 3, 5, 10, 25, 50, 100, 200, 300, 400 and 500. Group (B) were tested after each of five freeze-thaw sequences, with data collected from the 10th load cycle in each sequence. Group A: Flexion/extension stiffness reduced significantly over the 500 load cycles (-22%; P=0.001), but there was no significant change between the 5th and 200th load cycles. Lateral bending stiffness decreased significantly (-18%; P=0.009) over the 500 load cycles, but there was no significant change in axial rotation stiffness (P=0.137). Group B: There was no significant difference between mean stiffness over the five freeze-thaw sequences in flexion/extension (P=0.813) and a near significant reduction in mean stiffness in axial rotation (-6%; P=0.07). However, there was a statistically significant increase in stiffness in lateral bending (+30%; P=0.007). Comparison of in vitro testing results for immature thoracic bovine spine segments between studies can be performed with up to 200 load cycles without significant changes in stiffness. However, when testing protocols require greater than 200 cycles, or when repeated freeze-thaw cycles are involved, it is important to account for the effect of cumulative load and freeze-thaw cycles on spine segment stiffness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Managing spinal deformities in young children is challenging, particularly early onset scoliosis (EOS). Surgical intervention is often required if EOS has been unresponsive to conservative treatment particularly with rapidly progressive curves. An emerging treatment option for EOS is fusionless scoliosis surgery. Similar to bracing, this surgical option potentially harnesses growth, motion and function of the spine along with correcting spinal deformity. Dual growing rods are one such fusionless treatment, which aims to modulate growth of the vertebrae. The aim of this study was to ascertain the extent to which semi-constrained growing rods (Medtronic Sofamor Danek Memphis, TN, USA) with a telescopic sleeve component, reduce rotational constraint on the spine compared with standard rigid rods and hence potentially provide a more physiological mechanical environment for the growing spine. This study found that semi-constrained growing rods would be expected to allow growth via the telescopic rod components while maintaining the axial flexibility of the spine and the improved capacity for final correction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We contribute an empirically derived noise model for the Kinect sensor. We systematically measure both lateral and axial noise distributions, as a function of both distance and angle of the Kinect to an observed surface. The derived noise model can be used to filter Kinect depth maps for a variety of applications. Our second contribution applies our derived noise model to the KinectFusion system to extend filtering, volumetric fusion, and pose estimation within the pipeline. Qualitative results show our method allows reconstruction of finer details and the ability to reconstruct smaller objects and thinner surfaces. Quantitative results also show our method improves pose estimation accuracy. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The use of dual growing rods is a fusionless surgical approach to the treatment of early onset scoliosis (EOS), which aims of harness potential growth in order to correct spinal deformity. The purpose of this study was to compare the in-vitro biomechanical response of two different dual rod designs under axial rotation loading. Methods Six porcine spines were dissected into seven level thoracolumbar multi-segmental units. Each specimen was mounted and tested in a biaxial Instron machine, undergoing nondestructive left/right axial rotation to peak moments of 4Nm at a constant rotation rate of 8deg.s-1. A motion tracking system (Optotrak) measured 3D displacements of individual vertebrae. Each spine was tested in an un-instrumented state first and then with appropriately sized semi-constrained growing rods and ‘rigid’ rods in alternating sequence. Range of motion, neutral zone size and stiffness were calculated from the moment-rotation curves and intervertebral ranges of motion were calculated from Optotrak data. Findings Irrespective of test sequence, rigid rods showed significantly reduction of total rotation across all instrumented levels (with increased stiffness) whilst semi-constrained rods exhibited similar rotation behavior to the un-instrumented (P<0.05). An 11% and 8% increase in stiffness for left and right axial rotation respectively and 15% reduction in total range of motion was recorded with dual rigid rods compared with semi-constrained rods. Interpretation Based on these findings, the semi-constrained growing rods do not increase axial rotation stiffness compared with un-instrumented spines. This is thought to provide a more physiological environment for the growing spine compared to dual rigid rod constructs.