380 resultados para ARPANET (Computer network)
Resumo:
Computer vision is much more than a technique to sense and recover environmental information from an UAV. It should play a main role regarding UAVs’ functionality because of the big amount of information that can be extracted, its possible uses and applications, and its natural connection to human driven tasks, taking into account that vision is our main interface to world understanding. Our current research’s focus lays on the development of techniques that allow UAVs to maneuver in spaces using visual information as their main input source. This task involves the creation of techniques that allow an UAV to maneuver towards features of interest whenever a GPS signal is not reliable or sufficient, e.g. when signal dropouts occur (which usually happens in urban areas, when flying through terrestrial urban canyons or when operating on remote planetary bodies), or when tracking or inspecting visual targets—including moving ones—without knowing their exact UMT coordinates. This paper also investigates visual serving control techniques that use velocity and position of suitable image features to compute the references for flight control. This paper aims to give a global view of the main aspects related to the research field of computer vision for UAVs, clustered in four main active research lines: visual serving and control, stereo-based visual navigation, image processing algorithms for detection and tracking, and visual SLAM. Finally, the results of applying these techniques in several applications are presented and discussed: this study will encompass power line inspection, mobile target tracking, stereo distance estimation, mapping and positioning.
Resumo:
This paper presents the preliminary results in establishing a strategy for predicting Zenith Tropospheric Delay (ZTD) and relative ZTD (rZTD) between Continuous Operating Reference Stations (CORS) in near real-time. It is anticipated that the predicted ZTD or rZTD can assist the network-based Real-Time Kinematic (RTK) performance over long inter-station distances, ultimately, enabling a cost effective method of delivering precise positioning services to sparsely populated regional areas, such as Queensland. This research firstly investigates two ZTD solutions: 1) the post-processed IGS ZTD solution and 2) the near Real-Time ZTD solution. The near Real-Time solution is obtained through the GNSS processing software package (Bernese) that has been deployed for this project. The predictability of the near Real-Time Bernese solution is analyzed and compared to the post-processed IGS solution where it acts as the benchmark solution. The predictability analyses were conducted with various prediction time of 15, 30, 45, and 60 minutes to determine the error with respect to timeliness. The predictability of ZTD and relative ZTD is determined (or characterized) by using the previously estimated ZTD as the predicted ZTD of current epoch. This research has shown that both the ZTD and relative ZTD predicted errors are random in nature; the STD grows from a few millimeters to sub-centimeters while the predicted delay interval ranges from 15 to 60 minutes. Additionally, the RZTD predictability shows very little dependency on the length of tested baselines of up to 1000 kilometers. Finally, the comparison of near Real-Time Bernese solution with IGS solution has shown a slight degradation in the prediction accuracy. The less accurate NRT solution has an STD error of 1cm within the delay of 50 minutes. However, some larger errors of up to 10cm are observed.
Resumo:
Computer forensics is the process of gathering and analysing evidence from computer systems to aid in the investigation of a crime. Typically, such investigations are undertaken by human forensic examiners using purpose-built software to discover evidence from a computer disk. This process is a manual one, and the time it takes for a forensic examiner to conduct such an investigation is proportional to the storage capacity of the computer's disk drives. The heterogeneity and complexity of various data formats stored on modern computer systems compounds the problems posed by the sheer volume of data. The decision to undertake a computer forensic examination of a computer system is a decision to commit significant quantities of a human examiner's time. Where there is no prior knowledge of the information contained on a computer system, this commitment of time and energy occurs with little idea of the potential benefit to the investigation. The key contribution of this research is the design and development of an automated process to describe a computer system and its activity for the purposes of a computer forensic investigation. The term proposed for this process is computer profiling. A model of a computer system and its activity has been developed over the course of this research. Using this model a computer system, which is the subj ect of investigation, can be automatically described in terms useful to a forensic investigator. The computer profiling process IS resilient to attempts to disguise malicious computer activity. This resilience is achieved by detecting inconsistencies in the information used to infer the apparent activity of the computer. The practicality of the computer profiling process has been demonstrated by a proof-of concept software implementation. The model and the prototype implementation utilising the model were tested with data from real computer systems. The resilience of the process to attempts to disguise malicious activity has also been demonstrated with practical experiments conducted with the same prototype software implementation.
Resumo:
Web applications such as blogs, wikis, video and photo sharing sites, and social networking systems have been termed ‘Web 2.0’ to highlight an arguably more open, collaborative, personalisable, and therefore more participatory internet experience than what had previously been possible. Giving rise to a culture of participation, an increasing number of these social applications are now available on mobile phones where they take advantage of device-specific features such as sensors, location and context awareness. This workshop made a contribution towards exploring and better understanding the opportunities and challenges provided by tools, interfaces, methods and practices of social and mobile technology that enable participation and engagement. It brought together a group of academics and practitioners from a diverse range of disciplines such as computing and engineering, social sciences, digital media and human-computer interaction to critically examine a range of applications of social and mobile technology, such as social networking, mobile interaction, wikis (eg., futuremelbourne.com.au), twitter, blogging, virtual worlds (eg, hub2.org), and their impact to foster community activism, civic engagement and cultural citizenship.
Resumo:
Digital forensics investigations aim to find evidence that helps confirm or disprove a hypothesis about an alleged computer-based crime. However, the ease with which computer-literate criminals can falsify computer event logs makes the prosecutor's job highly challenging. Given a log which is suspected to have been falsified or tampered with, a prosecutor is obliged to provide a convincing explanation for how the log may have been created. Here we focus on showing how a suspect computer event log can be transformed into a hypothesised actual sequence of events, consistent with independent, trusted sources of event orderings. We present two algorithms which allow the effort involved in falsifying logs to be quantified, as a function of the number of `moves' required to transform the suspect log into the hypothesised one, thus allowing a prosecutor to assess the likelihood of a particular falsification scenario. The first algorithm always produces an optimal solution but, for reasons of efficiency, is suitable for short event logs only. To deal with the massive amount of data typically found in computer event logs, we also present a second heuristic algorithm which is considerably more efficient but may not always generate an optimal outcome.
Resumo:
With the increasing resolution of remote sensing images, road network can be displayed as continuous and homogeneity regions with a certain width rather than traditional thin lines. Therefore, road network extraction from large scale images refers to reliable road surface detection instead of road line extraction. In this paper, a novel automatic road network detection approach based on the combination of homogram segmentation and mathematical morphology is proposed, which includes three main steps: (i) the image is classified based on homogram segmentation to roughly identify the road network regions; (ii) the morphological opening and closing is employed to fill tiny holes and filter out small road branches; and (iii) the extracted road surface is further thinned by a thinning approach, pruned by a proposed method and finally simplified with Douglas-Peucker algorithm. Lastly, the results from some QuickBird images and aerial photos demonstrate the correctness and efficiency of the proposed process.
Resumo:
Traditional media are under assault from digital technologies. Online advertising is eroding the financial basis of newspapers and television, demarcations between different forms of media are fading, and audiences are fragmenting. We can podcast our favourite radio show, data accompanies television programs, and we catch up with newspaper stories on our laptops. Yet mainstream media remain enormously powerful. The Media and Communications in Australia offers a systematic introduction to this dynamic field. Fully updated and revised to take account of recent developments, this third edition outlines the key media industries and explains how communications technologies are impacting on them. It provides a thorough overview of the main approaches taken in studying the media, and includes new chapters on social media, gaming, telecommunications, sport and cultural diversity. With contributions from some of Australia's best researchers and teachers in the field, The Media and Communications in Australia is the most comprehensive and reliable introduction to media and communications available. It is an ideal student text, and a reference for teachers of media and anyone interested in this influential industry.
Resumo:
Network induced delay in networked control systems (NCS) is inherently non-uniformly distributed and behaves with multifractal nature. However, such network characteristics have not been well considered in NCS analysis and synthesis. Making use of the information of the statistical distribution of NCS network induced delay, a delay distribution based stochastic model is adopted to link Quality-of-Control and network Quality-of-Service for NCS with uncertainties. From this model together with a tighter bounding technology for cross terms, H∞ NCS analysis is carried out with significantly improved stability results. Furthermore, a memoryless H∞ controller is designed to stabilize the NCS and to achieve the prescribed disturbance attenuation level. Numerical examples are given to demonstrate the effectiveness of the proposed method.
Resumo:
Accurate road lane information is crucial for advanced vehicle navigation and safety applications. With the increasing of very high resolution (VHR) imagery of astonishing quality provided by digital airborne sources, it will greatly facilitate the data acquisition and also significantly reduce the cost of data collection and updates if the road details can be automatically extracted from the aerial images. In this paper, we proposed an effective approach to detect road lanes from aerial images with employment of the image analysis procedures. This algorithm starts with constructing the (Digital Surface Model) DSM and true orthophotos from the stereo images. Next, a maximum likelihood clustering algorithm is used to separate road from other ground objects. After the detection of road surface, the road traffic and lane lines are further detected using texture enhancement and morphological operations. Finally, the generated road network is evaluated to test the performance of the proposed approach, in which the datasets provided by Queensland department of Main Roads are used. The experiment result proves the effectiveness of our approach.
Resumo:
This article presents a survey of authorisation models and considers their ‘fitness-for-purpose’ in facilitating information sharing. Network-supported information sharing is an important technical capability that underpins collaboration in support of dynamic and unpredictable activities such as emergency response, national security, infrastructure protection, supply chain integration and emerging business models based on the concept of a ‘virtual organisation’. The article argues that present authorisation models are inflexible and poorly scalable in such dynamic environments due to their assumption that the future needs of the system can be predicted, which in turn justifies the use of persistent authorisation policies. The article outlines the motivation and requirement for a new flexible authorisation model that addresses the needs of information sharing. It proposes that a flexible and scalable authorisation model must allow an explicit specification of the objectives of the system and access decisions must be made based on a late trade-off analysis between these explicit objectives. A research agenda for the proposed Objective-based Access Control concept is presented.
Resumo:
The following paper presents an evaluation of airborne sensors for use in vegetation management in powerline corridors. Three integral stages in the management process are addressed including, the detection of trees, relative positioning with respect to the nearest powerline and vegetation height estimation. Image data, including multi-spectral and high resolution, are analyzed along with LiDAR data captured from fixed wing aircraft. Ground truth data is then used to establish the accuracy and reliability of each sensor thus providing a quantitative comparison of sensor options. Tree detection was achieved through crown delineation using a Pulse-Coupled Neural Network (PCNN) and morphologic reconstruction applied to multi-spectral imagery. Through testing it was shown to achieve a detection rate of 96%, while the accuracy in segmenting groups of trees and single trees correctly was shown to be 75%. Relative positioning using LiDAR achieved a RMSE of 1.4m and 2.1m for cross track distance and along track position respectively, while Direct Georeferencing achieved RMSE of 3.1m in both instances. The estimation of pole and tree heights measured with LiDAR had a RMSE of 0.4m and 0.9m respectively, while Stereo Matching achieved 1.5m and 2.9m. Overall a small number of poles were missed with detection rates of 98% and 95% for LiDAR and Stereo Matching.
Resumo:
This paper discusses the use of models in automatic computer forensic analysis, and proposes and elaborates on a novel model for use in computer profiling, the computer profiling object model. The computer profiling object model is an information model which models a computer as objects with various attributes and inter-relationships. These together provide the information necessary for a human investigator or an automated reasoning engine to make judgements as to the probable usage and evidentiary value of a computer system. The computer profiling object model can be implemented so as to support automated analysis to provide an investigator with the information needed to decide whether manual analysis is required.
Resumo:
Network Jamming systems provide real-time collaborative media performance experiences for novice or inexperienced users. In this paper we will outline the theoretical and developmental drivers for our Network Jamming software, called jam2jam. jam2jam employs generative algorithmic techniques with particular implications for accessibility and learning. We will describe how theories of engagement have directed the design and development of jam2jam and show how iterative testing cycles in numerous international sites have informed the evolution of the system and its educational potential. Generative media systems present an opportunity for users to leverage computational systems to make sense of complex media forms through interactive and collaborative experiences. Generative music and art are a relatively new phenomenon that use procedural invention as a creative technique to produce music and visual media. These kinds of systems present a range of affordances that can facilitate new kinds of relationships with music and media performance and production. Early systems have demonstrated the potential to provide access to collaborative ensemble experiences to users with little formal musical or artistic expertise.This presentation examines the educational affordances of these systems evidenced by field data drawn from the Network Jamming Project. These generative performance systems enable access to a unique kind of music/media’ ensemble performance with very little musical/ media knowledge or skill and they further offer the possibility of unique interactive relationships with artists and creative knowledge through collaborative performance. Through the process of observing, documenting and analysing young people interacting with the generative media software jam2jam a theory of meaningful engagement has emerged from the need to describe and codify how users experience creative engagement with music/media performance and the locations of meaning. In this research we observed that the musical metaphors and practices of ‘ensemble’ or collaborative performance and improvisation as a creative process for experienced musicians can be made available to novice users. The relational meanings of these musical practices afford access to high level personal, social and cultural experiences. Within the creative process of collaborative improvisation lie a series of modes of creative engagement that move from appreciation through exploration, selection, direction toward embodiment. The expressive sounds and visions made in real-time by improvisers collaborating are immediate and compelling. Generative media systems let novices access these experiences with simple interfaces that allow them to make highly professional and expressive sonic and visual content simply by using gestures and being attentive and perceptive to their collaborators. These kinds of experiences present the potential for highly complex expressive interactions with sound and media as a performance. Evidence that has emerged from this research suggest that collaborative performance with generative media is transformative and meaningful. In this presentation we draw out these ideas around an emerging theory of meaningful engagement that has evolved from the development of network jamming software. Primarily we focus on demonstrating how these experiences might lead to understandings that may be of educational and social benefit.