618 resultados para ANIMAL CELLS
Clusterin facilitates COMMD1 and I-kB degradation to enhance NF-kB activity in prostate cancer cells
Resumo:
Secretory clusterin (sCLU) is a stress-activated, cytoprotective chaperone that confers broad-spectrum cancer treatment resistance, and its targeted inhibitor (OGX-011) is currently in phase II trials for prostate, lung, and breast cancer. However, the molecular mechanisms by which sCLU inhibits treatment-induced apoptosis in prostate cancer remain incompletely defined. We report that sCLU increases NF-κB nuclear translocation and transcriptional activity by serving as a ubiquitin-binding protein that enhances COMMD1 and I-κB proteasomal degradation by interacting with members of the SCF-βTrCP E3 ligase family. Knockdown of sCLU in prostate cancer cells stabilizes COMMD1 and I-κB, thereby sequestrating NF-κB in the cytoplasm and decreasing NF-κB transcriptional activity. Comparative microarray profiling of sCLU-overexpressing and sCLU-knockdown prostate cancer cells confirmed that the expression of many NF-κB–regulated genes positively correlates with sCLU levels. We propose that elevated levels of sCLU promote prostate cancer cell survival by facilitating degradation of COMMD1 and I-κB, thereby activating the canonical NF-κB pathway.
Resumo:
Calcium (Ca) is the main element of most pulp capping materials and plays an essential role in mineralization. Different pulp capping materials can release various concentrations of Ca ions leading to different clinical outcomes. The purpose of this study was to investigate the effects of various concentrations of Ca ions on the growth and osteogenic differentiation of human dental pulp cells (hDPCs). Different concentrations of Ca ions were added to growth culture medium and osteogenic inductive culture medium. A Cell Counting Kit-8 (CCK-8) was used to determine the proliferation of hDPCs in growth culture medium. Osteogenic differentiation and mineralization were measured by alkaline phosphatase (ALP) assay, Alizarin red S/von kossa staining, calcium content quantitative assay. The selected osteogenic differentiation markers were investigated by quantitative real-time polymerase chain reaction (qRT-PCR). Within the range of 1.8–16.2 mM, increased concentrations of Ca ions had no effect on cell proliferation, but led to changes in osteogenic differentiation. It was noted that enhanced mineralized matrix nodule formation was found in higher Ca ions concentrations; however, ALP activity and gene expression were reduced. qRT-PCR results showed a trend towards down-regulated mRNA expression of type I collagen (COL1A2) and Runx2 at elevated concentrations of Ca ions, whereas osteopontin (OPN) and osteocalcin (OCN) mRNA expression was significantly up-regulated. Ca ions content in the culture media can significantly influence the osteogenic properties of hDPCs, indicating the importance of optimizing Ca ions release from dental pulp capping materials in order to achieve desirable clinical outcomes.
Resumo:
Sericin and fibroin are the two major proteins in the silk fibre produced by the domesticated silkworm, Bombyx mori. Fibroin has been extensively investigated as a biomaterial. We have previously shown that fibroin can function successfully as a substratum for growing cells of the eye. Sericin has been so far neglected as a biomaterial because of suspected allergenic activity. However, this misconception has now been dispelled, and sericin’s biocompatibility is currently indisputable. Aiming at promoting sericin as a possible substratum for the growth of corneal cells in order to make tissue-engineered constructs for the restoration of the ocular surface, in this study we investigated the attachment and growth in vitro of human corneal limbal epithelial cells (HLECs) on sericin-based membranes. Sericin was isolated and regenerated from the silkworm cocoons by an aqueous procedure, manufactured into membranes, and characterized (mechanical properties, structural analysis, contact angles). Primary cell cultures from two donors were established in serum-supplemented media in the presence of murine feeder cells. Membranes made of sericin and fibroin-sericin blends were assessed in vitro as substrata for HLECs in a serum-free medium, in a cell attachment assay and in a 3-day cell growth experiment. While the mechanical characteristics of sericin were found to be inferior to those of fibroin, its ability to enhance the attachment of HLECs was significantly superior to fibroin, as revealed by the PicoGreen® assay. Evidence was also obtained that cells can grow and differentiate on these substrata.
Resumo:
The head direction (HD) system in mammals contains neurons that fire to represent the direction the animal is facing in its environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular) inputs. Rat pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems, demonstrates that ‘grounding’ of modeled biological processes in the real world can reveal underlying functional principles (supporting the importance of robotics to biology), and proposes a functional role for stereotypical behaviours seen in infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in entorhinal cortex.
Resumo:
Purpose: Colorectal cancer patients diagnosed with stage I or II disease are not routinely offered adjuvant chemotherapy following resection of the primary tumor. However, up to 10% of stage I and 30% of stage II patients relapse within 5 years of surgery from recurrent or metastatic disease. The aim of this study was to determine if tumor-associated markers could detect disseminated malignant cells and so identify a subgroup of patients with early-stage colorectal cancer that were at risk of relapse. Experimental Design: We recruited consecutive patients undergoing curative resection for early-stage colorectal cancer. Immunobead reverse transcription-PCR of five tumor-associated markers (carcinoembryonic antigen, laminin γ2, ephrin B4, matrilysin, and cytokeratin 20) was used to detect the presence of colon tumor cells in peripheral blood and within the peritoneal cavity of colon cancer patients perioperatively. Clinicopathologic variables were tested for their effect on survival outcomes in univariate analyses using the Kaplan-Meier method. A multivariate Cox proportional hazards regression analysis was done to determine whether detection of tumor cells was an independent prognostic marker for disease relapse. Results: Overall, 41 of 125 (32.8%) early-stage patients were positive for disseminated tumor cells. Patients who were marker positive for disseminated cells in post-resection lavage samples showed a significantly poorer prognosis (hazard ratio, 6.2; 95% confidence interval, 1.9-19.6; P = 0.002), and this was independent of other risk factors. Conclusion: The markers used in this study identified a subgroup of early-stage patients at increased risk of relapse post-resection for primary colorectal cancer. This method may be considered as a new diagnostic tool to improve the staging and management of colorectal cancer. © 2006 American Association for Cancer Research.
Resumo:
The present study used ERPs to compare processing of fear-relevant (FR) animals (snakes and spiders) and non-fear-relevant (NFR) animals similar in appearance (worms and beetles). EEG was recorded from 18 undergraduate participants (10 females) as they completed two animal-viewing tasks that required simple categorization decisions. Participants were divided on a post hoc basis into low snake/spider fear and high snake/spider fear groups. Overall, FR animals were rated higher on fear and elicited a larger LPC. However, individual differences qualified these effects. Participants in the low fear group showed clear differentiation between FR and NFR animals on subjective ratings of fear and LPC modulation. In contrast, participants in the high fear group did not show such differentiation between FR and NFR animals. These findings suggest that the salience of feared-FR animals may generalize on both a behavioural and electro-cortical level to other animals of similar appearance but of a non-harmful nature.
Resumo:
The ultimate goal of periodontal tissue engineering is to produce predictable regeneration of alveolar bone, root cementum, and periodontal ligament, which are lost as a result of periodontal diseases. To achieve this goal, it is of great importance to develop novel bioactive materials which could stimulate the proliferation, differentiation and osteogenic/cementogenic gene expression of periodontal ligament cells (PDLCs) for periodontal regeneration. In this study, we synthesized novel Ca7Si2P2O16 ceramic powders for the first time by the sol–gel method and investigated the biological performance of PDLCs after exposure to different concentrations of Ca7Si2P2O16 extracts. The original extracts were prepared at 200 mg ml-1 and further diluted with serum-free cell culture medium to obtain a series of diluted extracts (100, 50, 25, 12.5 and 6.25 mg ml–1). Proliferation, alkaline phosphatase(ALP) activity, Ca deposition, and osteogenesis/cementogenesis-related gene expression (ALP, Col I, Runx2 and CEMP1) were assayed for PDLCs on days 7 and 14. The results showed that the ionic products from Ca7Si2P2O16 powders significantly stimulated the proliferation, ALP activity, Ca deposition and osteogenesis/cementogenesisrelated gene expression of PDLCs. In addition, it was found that Ca7Si2P2O16 powders had excellent apatite-mineralization ability in simulated body fluids. This study demonstrated that Ca7Si2P2O16 powders with such a specific composition possess the ability to stimulate the PDLC proliferation and osteoblast/cemenoblast-like cell differentiation, indicating that they are a promising bioactive material for periodontal tissue regeneration application.
Resumo:
Proteasomes can exist in several different molecular forms in mammalian cells. The core 20S proteasome, containing the proteolytic sites, binds regulatory complexes at the ends of its cylindrical structure. Together with two 19S ATPase regulatory complexes it forms the 26S proteasome, which is involved in ubiquitin-dependent proteolysis. The 20S proteasome can also bind 11S regulatory complexes (REG, PA28) which play a role in antigen processing, as do the three variable c-interferoninducible catalytic b-subunits (e.g. LMP7). In the present study, we have investigated the subcellular distribution of the different forms of proteasomes using subunit speci®c antibodies. Both 20S proteasomes and their 19S regulatory complexes are found in nuclear, cytosolic and microsomal preparations isolated from rat liver. LMP7 was enriched approximately two-fold compared with core a-type proteasome subunits in the microsomal preparations. 20S proteasomes were more abundant than 26S proteasomes, both in liver and cultured cell lines. Interestingly, some signi®cant differences were observed in the distribution of different subunits of the 19S regulatory complexes. S12, and to a lesser extent p45, were found to be relatively enriched in nuclear fractions from rat liver, and immuno¯uorescent labelling of cultured cells with anti-p45 antibodies showed stronger labelling in the nucleus than in the cytoplasm. The REG was found to be localized predominantly in the cytoplasm. Three- to six-fold increases in the level of REG were observed following cinterferon treatment of cultured cells but c-interferon had no obvious effect on its subcellular distribution. These results demonstrate that different regulatory complexes and subpopulations of proteasomes have different distributions within mammalian cells and, therefore, that the distribution is more complex than has been reported for yeast proteasomes.
Resumo:
Two representations have dominated public perceptions of the largest living marsupial carnivore, the Tasmanian devil. One is the voracious, hurricane-like innocent savage Taz of Looney Tunes cartoon fame. The other, familiar in nineteenth- and twentieth-century rural Tasmania, is the ferocious predator and scavenger that wantonly kills livestock — and perhaps even people, should they become immobilized in the wilderness at night. Devils can take prey nearly three times their size and eat more than a third of their body weight in a sitting. Even so, it is hard to imagine how this species, being only slightly larger than a fox terrier, could be so maligned in name and image...
Low temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells
Resumo:
The electrical performance of indium tin oxide (ITO) coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multi-wall carbon nanotubes (MWCNTs) were synthesized by chemical vapor deposition, using ultra-thin Fe layers as catalyst. The process parameters (temperature, gas flow and duration) were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the MWCNT-enhanced electrodes are found to improve the charge carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.