235 resultados para 68-502C
Resumo:
between mid 2010 and early 2011, Queensland road related infrastructures were devastated by flood and cyclone related natural disasters. Responding to these recent events and in preparing for more regular and intense climate-change induced events in future, the Queensland Government is now reviewing how post-disaster road infrastructure recovery projects are planned and delivered. In particular, there is awareness that rebuilding such infrastructure need sustainable strategies across economic, environmental and social dimensions. A comprehensive sustainability assessment framework for pre and post disaster situations can minimize negative impact on our communities, economy and environment. This research is underway to develop a comprehensive sustainability element frame work for post disaster management in road infrastructures in Queensland, Australia. Analyzing the implications of disruption to transport network and associated services is an important part of preparing local and regional responses to the impacts of natural disasters. This research can contribute to strategic planning, management leading to safe, efficient and integrated transport system that supports sustainable economic, social and environmental outcomes in Queensland. Within this context, this paper provides an overview of the qualitative mixed-method research approach involving literature reviews and case studies to explore and evaluate a number of sustainability elements with a view to develop operational strategies for disaster recovery road projects.
Resumo:
Methane (CH4) is an important greenhouse gas with a global warming potential (GWP) 25 times greater than carbon dioxide (CO2) that can be produced or consumed in soils depending on environmental conditions and other factors. Biochar application to soils has been shown to reduce CH4 emissions and to increase CH4 consumption. However, the effects of rice husk biochar (RB) have not been thoroughly investigated. Two 60-day laboratory incubation experiments were conducted to investigate the effects of amending two soil types with RB, raw mill mud (MM) and composted mill mud (CM) on soil CH4 consumption and emissions. Soil cores incubated in 1 L glass jars and gas samples were analysed for CH4 using gas chromatography. Average CH4 consumption rates varied from -0.06 to -0.68 g CH4-C( )/ha/d in sandy loam soil and -0.59 to -1.00 g CH4-C/ha/d in clay soil. Application of RB resulted in CH4 uptake of -0.52 to -0.55 g CH4-C/ha/d in sandy loam and -0.76 to -0.91 g CH4-C/ha/d in clay soil. Addition of MM showed low CH4 emissions or consumption at 60% water-filled pore space (WFPS) in both soils. However, at high water contents (>75% WFPS) the application of MM produced high rates of CH4 emissions which were significantly suppressed when RB was added. Cumulative emissions of the MM treatment produced 108.9 g CH4-C/ha at 75% WFPS and 11 459.3 g CH4-C/ha at 90% WFPS in sandy loam soil over a period of 60 days. RB can increase CH4 uptake under low soil water content (SWC) and decrease CH4 emissions under anaerobic conditions. CM expressed more potential to reduce CH4 emissions than those of MM.
Resumo:
PURPOSE: To test the reliability of Timed Up and Go Tests (TUGTs) in cardiac rehabilitation (CR) and compare TUGTs to the 6-Minute Walk Test (6MWT) for outcome measurement. METHODS: Sixty-one of 154 consecutive community-based CR patients were prospectively recruited. Subjects undertook repeated TUGTs and 6MWTs at the start of CR (start-CR), postdischarge from CR (post-CR), and 6 months postdischarge from CR (6 months post-CR). The main outcome measurements were TUGT time (TUGTT) and 6MWT distance (6MWD). RESULTS: Mean (SD) TUGTT1 and TUGTT2 at the 3 assessments were 6.29 (1.30) and 5.94 (1.20); 5.81 (1.22) and 5.53 (1.09); and 5.39 (1.60) and 5.01 (1.28) seconds, respectively. A reduction in TUGTT occurred between each outcome point (P ≤ .002). Repeated TUGTTs were strongly correlated at each assessment, intraclass correlation (95% CI) = 0.85 (0.76–0.91), 0.84 (0.73–0.91), and 0.90 (0.83–0.94), despite a reduction between TUGTT1 and TUGTT2 of 5%, 5%, and 7%, respectively (P ≤ .006). Relative decreases in TUGTT1 (TUGTT2) occurred from start-CR to post-CR and from start-CR to 6 months post-CR of −7.5% (−6.9%) and −14.2% (−15.5%), respectively, while relative increases in 6MWD1 (6MWD2) occurred, 5.1% (7.2%) and 8.4% (10.2%), respectively (P < .001 in all cases). Pearson correlation coefficients for 6MWD1 to TUGTT1 and TUGTT2 across all times were −0.60 and −0.68 (P < .001) and the intraclass correlations (95% CI) for the speeds derived from averaged 6MWDs and TUGTTs were 0.65 (0.54, 0.73) (P < .001). CONCLUSIONS: Similar relative changes occurred for the TUGT and the 6MWT in CR. A significant correlation between the TUGTT and 6MWD was demonstrated, and we suggest that the TUGT may provide a related or a supplementary measurement of functional capacity in CR.
Resumo:
Aim his study reports the use of exploratory factor analysis to determine construct validity of a modified advanced practice role delineation tool. Background Little research exists on specific activities and domains of practice within advanced practice nursing roles, making it difficult to define service parameters of this level of nursing practice. A valid and reliable tool would assist those responsible for employing or deploying advanced practice nurses by identifying and defining their service profile. This is the third paper from a multi-phase Australian study aimed at assigning advanced practice roles. Methods A postal survey was conducted of a random sample of state government employed Registered nurses and midwives, across various levels and grades of practice in the state of Queensland, Australia, using the modified Advanced Practice Role Delineation tool. Exploratory factor analysis, using principal axis factoring was undertaken to examine factors in the modified tool. Cronbach’s alpha coefficient determined reliability of the overall scale and identified factors. Results There were 658 responses (42% response rate). The five factors found with loadings of ≥.400 for 40 of the 41 APN activities were similar to the five domains in the Strong model. Cronbach’s alpha coefficient was .94 overall and for the factors ranged from 0.83 to 0.95. Conclusion Exploratory factor analysis of the modified tool supports validity of the five domains of the original tool. Further investigation will identify use of the tool in a broader healthcare environment.
Resumo:
Detailed spectroscopic and chemical investigation of matioliite, including infrared and Raman spectroscopy, scanning electron microscopy and electron probe microanalysis has been carried out on homogeneous samples from the Gentil pegmatite, Mendes Pimentel, Minas Gerais, Brazil. The chemical composition is (wt.%): FeO 2.20, CaO 0.05, Na2O 1.28, MnO 0.06, Al2O3 39.82, P2O5 42.7, MgO 4.68, F 0.02 and H2O 9.19; total 100.00. The mineral crystallize in the monoclinic crystal system, C2/c space group, with a = 25.075(1) Å, b = 5.0470(3) Å, c = 13.4370(7) Å, β = 110.97(3)°, V = 1587.9(4) Å3, Z = 4. Raman spectroscopy coupled with infrared spectroscopy supports the concept of phosphate, hydrogen phosphate and dihydrogen phosphate units in the structure of matioliite. Infrared and Raman bands attributed to water and hydroxyl stretching modes are identified. Vibrational spectroscopy adds useful information to the molecular structure of matioliite.
Resumo:
We have analyzed a frondelite mineral sample from the Cigana mine, located in the municipality of Conselheiro Pena, a well-known pegmatite in Brazil. In the Cigana pegmatite, secondary phosphates, namely eosphorite, fairfieldite, fluorapatite, frondelite, gormanite, hureaulite, lithiophilite, reddingite and vivianite are common minerals in miarolitic cavities and in massive blocks after triphylite. The chemical formula was determined as (Mn0.68, Fe0.32)(Fe3+)3,72(PO4)3.17(OH)4.99. The structure of the mineral was assessed using vibrational spectroscopy. Bands attributed to the stretching and bending modes of PO4 3- and HOPO3 3- units were identified. The observation of multiple bands supports the concept of symmetry reduction of the phosphate anion in the frondelite structure. Sharp Raman and infrared bands at 3581 cm−1 is assigned to the OH stretching vibration. Broad Raman bands at 3063, 3529 and 3365 cm−1 are attributed to water stretching vibrational modes.
Resumo:
Banana is a staple crop in many regions where vitamin A deficiency is prevalent, making it a target for provitamin A biofortification. However, matrix effects may limit provitamin A bioavailability from bananas. The retinol bioefficacies of unripe and ripe bananas (study 1A), unripe high-provitamin A bananas (study 1B), and raw and cooked bananas (study 2) were determined in retinol-depleted Mongolian gerbils (n = 97/study) using positive and negative controls. After feeding a retinol-deficient diet for 6 and 4 wk in studies 1 and 2, respectively, customized diets containing 60, 30, or 15% banana were fed for 17 and 13 d, respectively. In study 1A, the hepatic retinol of the 60% ripe Cavendish group (0.52 ± 0.13 μmol retinol/liver) differed from baseline (0.65 ± 0.15 μmol retinol/liver) and was higher than the negative control group (0.39 ± 0.16 μmol retinol/liver; P < 0.0065). In study 1B, no groups differed from baseline (0.65 ± 0.15 μmol retinol/liver; P = 0.20). In study 2, the 60% raw Butobe group (0.68 ± 0.17 μmol retinol/liver) differed from the 60% cooked Butobe group (0.87 ± 0.24 μmol retinol/liver); neither group differed from baseline (0.80 ± 0.27 μmol retinol/liver; P < 0.0001). Total liver retinol was higher in the groups fed cooked bananas than in those fed raw (P = 0.0027). Body weights did not differ even though gerbils ate more green, ripe, and raw bananas than cooked, suggesting a greater indigestible component. In conclusion, thermal processing, but not ripening, improves the retinol bioefficacy of bananas. Food matrix modification affects carotenoid bioavailability from provitamin A biofortification targets.
Resumo:
Deep inelastic neutron scattering measurements on liquid 3He-4He mixtures in the normal phase have been performed on the VESUVIO spectrometer at the ISIS pulsed neutron source at exchanged wave vectors of about q≃120.0Å-1. The neutron Compton profiles J(y) of the mixtures were measured along the T=1.96K isotherm for 3He concentrations, x, ranging from 0.1 to 1.0 at saturated vapor pressures. Values of kinetic energies 〈T〉 of 3He and 4He atoms as a function of x, 〈T〉(x), were extracted from the second moment of J(y). The present determinations of 〈T〉(x) confirm previous experimental findings for both isotopes and, in the case of 3He, a substantial disagreement with theory is found. In particular 〈T〉(x) for the 3He atoms is found to be independent of concentration yielding a value 〈T〉3(x=0.1)≃12K, much lower than the value suggested by the most recent theoretical estimates of approximately 19 K.
A new model to study healing of a complex femur fracture with concurrent soft tissue injury in sheep
Resumo:
High energy bone fractures resulting from impact trauma are often accompanied by subcutaneous soft tissue injuries, even if the skin remains intact. There is evidence that such closed soft tissue injuries affect the healing of bone fractures, and vice versa. Despite this knowledge, most impact trauma studies in animals have focussed on bone fractures or soft tissue trauma in isolation. However, given the simultaneous impact on both tissues a better understanding of the interaction between these two injuries is necessary to optimise clinical treatment. The aim of this study was therefore to develop a new experimental model and characterise, for the first time, the healing of a complex fracture with concurrent closed soft tissue trauma in sheep. A pendulum impact device was designed to deliver a defined and standardised impact to the distal thigh of sheep, causing a reproducible contusion injury to the subcutaneous soft tissues. In a subsequent procedure, a reproducible femoral butterfly fracture (AO C3-type) was created at the sheep’s femur, which was initially stabilised for 5 days by an external fixator construct to allow for soft tissue swelling to recede, and ultimately in a bridging construct using locking plates. The combined injuries were applied to twelve sheep and the healing observed for four or eight weeks (six animals per group) until sacrifice. The pendulum impact led to a moderate to severe circumferential soft tissue injury with significant bruising, haematomas and partial muscle disruptions. Posttraumatic measurements showed elevated intra-compartmental pressure and circulatory tissue breakdown markers, with recovery to normal, pre-injury values within four days. Clinically, no neurovascular deficiencies were observed. Bi-weekly radiological analysis of the healing fractures showed progressive callus healing over time, with the average number of callus bridges increasing from 0.4 at two weeks to 4.2 at eight weeks. Biomechanical testing after sacrifice showed increasing torsional stiffness between four and eight weeks healing time from 10% to 100%, and increasing ultimate torsional strength from 10% to 64% (relative to the contralateral control limb). Our results demonstrate the robust healing of a complex femur fracture in the presence of a severe soft tissue contusion injury in sheep and demonstrate the establishment of a clinically relevant experimental model, for research aimed at improving the treatment of bone fractures accompanied by closed soft tissue injuries.
Resumo:
Collections of solid particles from the Earths' stratosphere have been a significant part of atmospheric research programs since 1965 [1], but it has only been in the past decade that space-related disciplines have provided the impetus for a continued interest in these collections. Early research on specific particle types collected from the stratosphere established that interplanetary dust particles (IDP's) can be collected efficiently and in reasonable abundance using flat-plate collectors [2-4]. The tenacity of Brownlee and co-workers in this subfield of cosmochemistry has led to the establishment of a successful IDP collection and analysis program (using flat-plate collectors on high-flying aircraft) based on samples available for distribution from Johnson Space Center [5]. Other stratospheric collections are made, but the program at JSC offers a unique opportunity to study well-documented, individual particles (or groups of particles) from a wide variety of sources [6]. The nature of the collection and curation process, as well as the timeliness of some sampling periods [7], ensures that all data obtained from stratospheric particles is a valuable resource for scientists from a wide range of disciplines. A few examples of the uses of these stratospheric dust collections are outlined below.