434 resultados para tri-gate transistor structure
Resumo:
Meyerhofferite is a calcium hydrated borate mineral with ideal formula: CaB3O3(OH)5�H2O and occurs as white complex acicular to crude crystals with length up to �4 cm, in fibrous divergent, radiating aggregates or reticulated and is often found in sedimentary or lake-bed borate deposits. The Raman spectrum of meyerhofferite is dominated by intense sharp band at 880 cm�1 assigned to the symmetric stretching mode of trigonal boron. Broad Raman bands at 1046, 1110, 1135 and 1201 cm�1 are attributed to BOH in-plane bending modes. Raman bands in the 900–1000 cm�1 spectral region are assigned to the antisymmetric stretching of tetrahedral boron. Distinct OH stretching Raman bands are observed at 3400, 3483 and 3608 cm�1. The mineral meyerhofferite has a distinct Raman spectrum which is different from the spectrum of other borate minerals, making Raman spectroscopy a very useful tool for the detection of meyerhofferite in sedimentary and lake bed deposits.
Resumo:
We have studied the mineral senagalite, a hydrated hydroxy phosphate of aluminium with formula Al2(PO4)(OH)3⋅3H2O using a combination of electron microscopy and vibrational spectroscopy. Senegalite crystal aggregates shows tabular to prismatic habitus and orthorhombic form. The Raman spectrum is dominated by an intense band at 1029 cm−1 assigned to the PO43- ν1 symmetric stretching mode. Intense Raman bands are found at 1071 and 1154 cm−1 with bands of lesser intensity at 1110, 1179 and 1206 cm−1 and are attributed to the PO43- ν3 antisymmetric stretching vibrations. The infrared spectrum shows complexity with a series overlapping bands. A comparison is made with spectra of other aluminium containing phosphate minerals such as augelite and turquoise. Multiple bands are observed for the phosphate bending modes giving support for the reduction of symmetry of the phosphate anion. Vibrational spectroscopy offers a means for the assessment of the structure of senagalite.
Resumo:
Structural and electronic properties have been studied for Boron Nitride nanoribbons (BNNR) with both zigzag and armchair shaped edge (Z-BNNR and A-BNNR) by first-principle spin-polarized total energy calculations. We found that the energy band gap of Z-BNNR is indirect and decreases monotonically with the increasing ribbon width, whereas direct energy band gap oscillation was observed for A-BNNRs. Additionally, C-substitution at either single boron or nitrogen atom site in BNNRs could induce spontaneous magnetization. Our results could be potentially useful to design magnetic nano-devices based on BNNRs.
Resumo:
Experimentally, hydrogen-free diamond-like carbon (DLC) films were assembled by means of pulsed laser deposition (PLD), where energetic small-carbon-clusters were deposited on the substrate. In this paper, the chemisorption of energetic C2 and C10 clusters on diamond (001)-( 2×1) surface was investigated by molecular dynamics simulation. The influence of cluster size and the impact energy on the structure character of the deposited clusters is mainly addressed. The impact energy was varied from a few tens eV to 100 eV. The chemisorption of C10 was found to occur only when its incident energy is above a threshold value ( E th). While, the C2 cluster was easily to adsorb on the surface even at much lower incident energy. With increasing the impact energy, the structures of the deposited C2 and C10 are different from the free clusters. Finally, the growth of films synthesized by energetic C2 and C10 clusters were simulated. The statistics indicate the C2 cluster has high probability of adsorption and films assembled of C2 present slightly higher SP3 fraction than that of C10-films, especially at higher impact energy and lower substrate temperature. Our result supports the experimental findings. Moreover, the simulation underlines the deposition mechanism at atomic scale.
Resumo:
This thesis makes several contributions towards improved methods for encoding structure in computational models of word meaning. New methods are proposed and evaluated which address the requirement of being able to easily encode linguistic structural features within a computational representation while retaining the ability to scale to large volumes of textual data. Various methods are implemented and evaluated on a range of evaluation tasks to demonstrate the effectiveness of the proposed methods.
Resumo:
Colemanite CaB3O4(OH)3 H2O is a secondary borate mineral formed from borax and ulexite in evaporate deposits of alkaline lacustrine sediments. The basic structure of colemanite contains endless chains of interlocking BO2(OH) triangles and BO3(OH) tetrahedrons with the calcium, water and extra hydroxide units interspersed between these chains. The Raman spectra of colemanite is characterized by an intense band at 3605 cm-1 assigned to the stretching vibration of OH units and a series of bands at 3182, 3300, 3389 and 3534 cm-1 assigned to water stretching vibrations. Infrared bands are observed in similar positions. The BO stretching vibrations of the trigonal and tetrahedral boron are characterized by Raman bands at 876, 1065 and 1084 cm-1. The OBO bending mode is defined by the Raman band at 611 cm-1. It is important to characterize the very wide range of borate minerals including colemanite because of the very wide range of applications of boron containing minerals.
Resumo:
This study of English Coronial practice raises a number of questions, not only regarding state investigations of suicide, but also of the role of the Coroner itself. Following observations at over 20 inquests into possible suicides, and in-depth interviews with six Coroners, three main issue emerged: first, there exists considerable slippage between different Coroners over which deaths are likely to be classified as suicide; second, the high standard of proof required, and immense pressure faced by Coroners from family members at inquest to reach any verdict other than suicide, can significantly depress likely suicide rates; and finally, Coroners feel no professional obligation, either individually or collectively, to contribute to the production of consistent and useful social data regarding suicide—arguably rendering comparative suicide statistics relatively worthless. These issues lead, ultimately, to a more important question about the role we expect Coroners to play within social governance, and within an effective, contemporary democracy.
Resumo:
The natural disasters incident that frequently hit Indonesia are floods, severe droughts, tsunamis, earth-quakes, volcano, eruptions, landslides, windstorm and forest fires. The impact of those natural disasters are significantly severe and affecting the quality of life of the community due to the breakdown of the public as-sets as one source to deliver public services. This paper is aimed to emphasis the importance of natural disaster risk-informed in relation to public asset management in Indonesian Central Government, particularly in asset planning stage where asset decision is made as the gate into the whole public asset management processes. A Case study in the Ministry of Finance Indonesia as the central government public asset manager and in 5 (five) line ministries/governmental agencies as public asset users was used as the approach to achieved the research objective. The case study devoured three data collection techniques i.e. interviews, observations and document archival which will be analysed by a content analysis approach. The result of the study indicates that Indonesian geographical position exposing many of public infra-structure assets as a high vulnerability to natural disasters. Information on natural-disaster trends and predictions to identify and measure the risks are available, however, such information are not utilise and integrated to the process of public infrastructure asset planning as the gate to the whole public asset management processes. Therefore, in order to accommodate and incorporate this natural disaster risk-information into public asset management processes, particularly in public asset planning, a public asset performance measurements framework should be adopted and applied in the process as one sources in making decision for infrastructure asset planning. Findings from this study provide useful input for the Ministry of Finance as public asset manager, scholars and private asset management practitioners in Indonesia to establish natural disaster risks awareness in public infrastructure asset management processes.
Resumo:
We define a pair-correlation function that can be used to characterize spatiotemporal patterning in experimental images and snapshots from discrete simulations. Unlike previous pair-correlation functions, the pair-correlation functions developed here depend on the location and size of objects. The pair-correlation function can be used to indicate complete spatial randomness, aggregation or segregation over a range of length scales, and quantifies spatial structures such as the shape, size and distribution of clusters. Comparing pair-correlation data for various experimental and simulation images illustrates their potential use as a summary statistic for calibrating discrete models of various physical processes.
Resumo:
Madeira vine (Anredera cordifolia (Ten.) Steenis) is a climber in the angiosperm family Basellaceae. It is native to South America and has naturalised in Australia. It is regarded as a serious environmental weed because of the structural damage it causes to native vegetation. The present study, for the first time, documents anatomical and morphological traits of the leaves of A. cordifolia and considers their implications for its ecology and physiology. Plants were grown under three different light levels, and anatomical and morphological leaf characters were compared among light levels, among cohorts, and with documented traits of the related species, Basella alba L. Stomata were present on both the adaxial and abaxial sides of the leaf, with significantly more stomata on the abaxial side and under high light. This may account for the ability of this species to fix large amounts of carbon and rapidly respond to light gaps. The leaves had very narrow veins and no sclerenchyma, suggesting a low construction cost that is associated with invasive plants. There was no significant difference in any of the traits among different cohorts, which agrees with the claim that A. cordifolia primarily propagates vegetatively. The anatomy and morphology of A. cordifolia was similar to that of B. alba.
Resumo:
This article provides a general overview of some of the plant research being conducted by a number of researchers at the Queensland University of Technology (QUT) Brisbane. Details about student projects and research facilities have been limited to those of relevance to plant structure and systematics. Academics, technicians and research students involved in plant research are in the Faculty of Science and Engineering, mainly in the School of Earth, Environment and Biological Sciences (EEBS), with a few exceptions. Our offices and laboratories are housed in a number of different buildings at the Gardens Point campus (e.g., P, Q, R, S, M Blocks) and we have strong collaborative links with Queensland Herbarium (BRI) and Mt Coot-tha Botanic Gardens.
Resumo:
The mineral natrodufrénite a secondary pegmatite phosphate mineral from Minas Gerais, Brazil, has been studied by a combination of scanning electron microscopy and vibrational spectroscopic techniques. Electron probe analysis shows the formula of the studied mineral as (Na0.88Ca0.12)∑1.00(Mn0.11Mg0.08Ca0.04Zr0.01Cu0.01)∑0.97(Al0.02)∑4.91(PO4)3.96(OH6.15F0.07)6.22⋅2.05(H2O). Raman spectroscopy identifies an intense peak at 1003 cm−1 assigned to the ν1 symmetric stretching mode. Raman bands are observed at 1059 and 1118 cm−1 and are attributed to the ν3 antisymmetric stretching vibrations. A comparison is made with the spectral data of other hydrate hydroxy phosphate minerals including cyrilovite and wardite. Raman bands at 560, 582, 619 and 668 cm−1 are assigned to the ν4 bending modes and Raman bands at 425, 444, 477 and 507 cm−1 are due to the ν2 bending modes. Raman bands in the 2600–3800 cm−1 spectral range are attributed to water and OH stretching vibrations. Vibrational spectroscopy enables aspects of the molecular structure of natrodufrénite to be assessed.
Resumo:
The study assessed natural levels and patterns of genetic variation in Arabian Gulf populations of a native pearl oyster to define wild population structure considering potential intrinsic and extrinsic factors that could influence any wild structure detected. The study was also the first attempt to develop microsatellite markers and to generate a genome survey sequence (GSS) dataset for the target species using next generation sequencing technology. The partial genome dataset generated has potential biotechnological applications and for pearl oyster farming in the future.
Resumo:
The paper examines the wage structure in the Chinese state enterprise sector between 1981 and 1987. This period is of particular interest given the introduction of major labour market reforms in China during the early 1980s. In essence the reforms represented a movement away from administratively determined prices towards a market–oriented system combined with a relatively flexible system of labour allocation. The Juhn, Murphy and Pierce (1991) decomposition is employed to shed light on the role of changing labour market institutions over the period.
Resumo:
Natural single-crystal specimens of barbosalite from Brazil, with general formula Fe2+Fe3+ 2 (PO4)2(OH)2 were investigated by Raman and infrared spectroscopy. The mineral occurs as secondary products in granitic pegmatites. The Raman spectrum of barbosalite is characterized by bands at 1020, 1033 and 1044 cm−1 cm−1, assigned to ν1 symmetric stretching mode of the HOPO3- 3 and PO3- 4 units. Raman bands at around 1067, 1083 and 1138 cm−1 are attributed to both the HOP and PO antisymmetric stretching vibrations. The set of Raman bands observed at 575, 589 and 606 cm−1 are assigned to the ν4 out of plane bending modes of the PO4 and H2PO4 units. Raman bands at 439, 461, 475 and 503 cm−1 are attributed to the ν2 PO4 and H2PO4 bending modes. Strong Raman bands observed at 312, 346 cm−1 with shoulder bands at 361, 381 and 398 cm−1 are assigned to FeO stretching vibrations. No bands which are attributable to water vibrations were found. Vibrational spectroscopy enables aspects of the molecular structure of barbosalite to be assessed.