281 resultados para temperature aging
Resumo:
As printed and flexible plastic electronic gadgets become increasingly viable today, there is a need to develop materials that suit the fabrication processes involved. Two desirable requirements are solution-processable active materials or precursors and low-temperature processability. In this article, we describe a straightforward method of depositing ZnO films by simple spin coating of an organometallic diethylzinc precursor solution and annealing the resulting film at low temperatures (≤200 °C) without involving any synthetic steps. By controlling the humidity in which annealing is conducted, we are able to adjust the intrinsic doping level and carrier concentration in diethylzinc-derived ZnO. Doped or conducting transport layers are greatly preferable to undoped layers as they enable low-resistance contacts and minimize the potential drops. This ability to controllably realize doped ZnO is a key feature of the fabrication process that we describe in this article. We employ field-effect measurements as a diagnostic tool to measure doping levels and mobilities in ZnO and demonstrate that doped ZnO with high charge carrier concentration is ideal for solar cell applications. Respectable power conversion efficiencies (up to 4.5%) are achieved in inverted solar cells that incorporate diethylzinc-derived ZnO films as the electron transport layer and organic blends as the active material. Extensions of this approach to grow ternary and quaternary films with organometallic precursor chemicals will enable solution based growth of a number of semiconductor films as well as a method to dope them.
Resumo:
Purpose: To examine the extent to which socio-demographic characteristics, modifiable lifestyle factors and health status influence the mental health of midlife and older Australian women from the Australian Healthy Aging of Women (HOW) study. Methods: Data on health status, chronic disease and modifiable lifestyle factors were collected from a random sample of 340 women aged 40-65 years, residing in Queensland, Australia in 2011. Structural equation modelling (SEM) was used to measure the effect of a range of socio-demographic characteristics (marital status, age, income), modifiable lifestyle factors (caffeine intake, alcohol consumption, exercise, physical activity, sleep), and health markers (self-reported physical health, history of chronic illness) on the latent construct, mental health. Mental health was evaluated using the Medical Outcomes Study Short Form 12 (SF-12®) and the Center for Epidemiologic Studies Depression Scale (CES-D). Results: The model was a good fit for the data (χ2 = 40.166, df =312, p 0.125, CFI = 0.976, TLI = 0.950, RMSEA = 0.030, 90% CI = 0.000-0.053); the model suggested mental health was negatively influenced by sleep disturbance (β = -0.628), sedentary lifestyle (β = -0.137), having been diagnosed with one or more chronic illnesses (β = -0.203), and poor self-reported physical health (β = - 0.161). While mental health was associated with sleep, it was not correlated with many other lifestyle factors (BMI (β = -0.050), alcohol consumption (β = 0.079), or cigarette smoking (β = 0.008)) or background socio-demographic characteristics (age (β = 0.078), or income (β = -0.039)). Conclusion: While research suggests that it is important to engage in a range health promoting behaviours to preserve good health, we found that only sleep disturbance, physical health, chronic illness and level of physical activity predicted current mental health. However, while socio-demographic characteristics and modifiable lifestyle factors seemed to have little direct impact on mental health, they probably had an indirect effect.
Resumo:
Objectives: Previous research has linked unhealthy lifestyle with a range of negative health outcomes in women. As women age however, they may have fewer performance expectations, but may view their health more positively. Clearly, the experiences of midlife and older women in relation to health and wellbeing need further exploration. The purpose of this study is to examine the factors associated with poor health-related quality of life in midlife (HRQoL) and older Australian women. Methods: The Australian longitudinal Healthy Aging of Women (HOW) study prospectively examines HRQoL, chronic disease and modifiable lifestyle factors midlife and older women as they age. Random sampling was used to select rural and urban based women from South-East Queensland, Australia. Data were collected from 386 women at three time points over the last decade (2001, 2004 and 2011). Results: The average age of women in this study was 65 years (SD = 2.82). Almost three-quarters (73%, n = 248) of the sample were married or living as though married, nine per cent (n = 30) were separated or divorced and a small proportion were had never married (n = 13). Most (86%, n = 291) of the women sample reported being Australian born, around one quarter (34%, n = 114) had completed additional study since leaving school (university degree or diploma). Over half (55%, n = 186) of participants were retired, one quarter (25%, n = 85) were in paid employment and the remained were unemployed (1%, n = 4), unable to work because of illness (2%, n = 6) or worked within the home (17%, n = 56). Using data collected over time we examined the relationship between a range of modifiable lifestyle factors and mental health using structural equation modelling. The overall model exhibited a good fit with the data. Poor sleep quality was associated with reduced mental health while better mental health was reported in women who exercised regularly and satisfied with their currently weight. As hypothesized, past mental health was a significant mediator of current mental health. Conclusions: These findings demonstrate that the mental health of women is complex and needs to be understood not only in terms of current lifestyle but also in relation to previously reported health status.
Resumo:
Attention has recently focussed on MgB2 superconductors (Tc~39K) which can be formed into wires with high material density and viable critical current densities (Jc)1. However, broader utilisation of this diboride and many others is likely to occur when facile synthesis for bulk applications is developed. To date, common synthesis methods include high temperature sintering of mixed elemental powders2, combustion synthesis3, mechano-chemical mixing with high temperature sintering4 and high pressure (~GPa region) with high temperature. In this work, we report on a lower temperature, moderate (<4MPa) pressure method to synthesise metal diborides.
Resumo:
Commercially viable carbon–neutral biodiesel production from microalgae has potential for replacing depleting petroleum diesel. The process of biodiesel production from microalgae involves harvesting, drying and extraction of lipids which are energy- and cost-intensive processes. The development of effective large-scale lipid extraction processes which overcome the complexity of microalgae cell structure is considered one of the most vital requirements for commercial production. Thus the aim of this work was to investigate suitable extraction methods with optimised conditions to progress opportunities for sustainable microalgal biodiesel production. In this study, the green microalgal species consortium, Tarong polyculture was used to investigate lipid extraction with hexane (solvent) under high pressure and variable temperature and biomass moisture conditions using an Accelerated Solvent Extraction (ASE) method. The performance of high pressure solvent extraction was examined over a range of different process and sample conditions (dry biomass to water ratios (DBWRs): 100%, 75%, 50% and 25% and temperatures from 70 to 120 ºC, process time 5–15 min). Maximum total lipid yields were achieved at 50% and 75% sample dryness at temperatures of 90–120 ºC. We show that individual fatty acids (Palmitic acid C16:0; Stearic acid C18:0; Oleic acid C18:1; Linolenic acid C18:3) extraction optima are influenced by temperature and sample dryness, consequently affecting microalgal biodiesel quality parameters. Higher heating values and kinematic viscosity were compliant with biodiesel quality standards under all extraction conditions used. Our results indicate that biodiesel quality can be positively manipulated by selecting process extraction conditions that favour extraction of saturated and mono-unsaturated fatty acids over optimal extraction conditions for polyunsaturated fatty acids, yielding positive effects on cetane number and iodine values. Exceeding biodiesel standards for these two parameters opens blending opportunities with biodiesels that fall outside the minimal cetane and maximal iodine values.
Resumo:
Thin film nanostructured gas sensors typically operate at temperatures above 400°C, but lower temperature operation is highly desirable, especially for remote area field sensing as this reduces significantly power consumption. We have investigated a range of sensor materials based on both pure and doped tungsten oxide (mainly focusing on Fe-doping), deposited using both thermal evaporation and electron-beam evaporation, and using a variety of post-deposition annealing. The films show excellent sensitivity at operating temperatures as low as 150°C for detection of NO2. There is a definite relationship between the sensitivity and the crystallinity and nanostructure obtained through the deposition and heat treatment processes, as well as variations in the conductivity caused both by doping and heat treatmetn. The ultimate goal of this work is to control the sensing properties, including selectivity to specific gases through the engineering of the electronic properties and the nanostructure of the films.
Resumo:
This thesis is a population-based ecological study designed to investigate the issue of mortality displacement (or "harvesting" effect) in the assessment of temperature-related deaths in Brisbane, Australia. It examines the temperature impacts on mortality, and assesses the harvesting effects on the temperature–related deaths. This study contributes to the knowledge base of understanding the temperature-mortality relationship and assists in formulating and evaluating public health intervention strategies within the context of climate change.
Pupal diapause development and termination is driven by low temperature chilling in Bactrocera minax