337 resultados para spatial pattern


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oral squamous cell carcinomas (OSCC) often arise from dysplastic lesions. The role of cancer stem cells in tumour initiation is widely accepted, yet the potential existence of pre-cancerous stem cells in dysplastic tissue has received little attention. Cell lines from oral diseases ranging in severity from dysplasia to malignancy provide opportunity to investigate the involvement of stem cells in malignant progression from dysplasia. Stem cells are functionally defined by their ability to generate hierarchical tissue structures in consortium with spatial regulation. Organotypic cultures readily display tissue hierarchy in vitro; hence, in this study, we compared hierarchical expression of stem cell-associated markers in dermis-based organotypic cultures of oral epithelial cells from normal tissue (OKF6-TERT2), mild dysplasia (DOK), severe dysplasia (POE-9n) and OSCC (PE/CA P J15). Expression of CD44, p75NTR, CD24 and ALDH was studied in monolayers by flow cytometry and in organotypic cultures by immunohistochemistry. Spatial regulation of CD44 and p75NTR was evident for organotypic cultures of normal (OKF6-TERT2) and dysplasia (DOK and POE-9n) but was lacking for OSCC (PE/CA PJ15)-derived cells. Spatial regulation of CD24 was not evident. All monolayer cultures exhibited CD44, p75NTR, CD24 antigens and ALDH activity (ALDEFLUOR® assay), with a trend towards loss of population heterogeneity that mirrored disease severity. In monolayer, increased FOXA1 and decreased FOXA2 expression correlated with disease severity, but OCT3/4, Sox2 and NANOG did not. We conclude that dermis-based organotypic cultures give opportunity to investigate the mechanisms that underlie loss of spatial regulation of stem cell markers seen with OSCC-derived cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: A range of health outcomes at a population level are related to differences in levels of social disadvantage. Understanding the impact of any such differences in palliative care is important. The aim of this study was to assess, by level of socio-economic disadvantage, referral patterns to specialist palliative care and proximity to inpatient services. Methods: All inpatient and community palliative care services nationally were geocoded (using postcode) to one nationally standardised measure of socio-economic deprivation – Socio-Economic Index for Areas (SEIFA; 2006 census data). Referral to palliative care services and characteristics of referrals were described through data collected routinely at clinical encounters. Inpatient location was measured from each person’s home postcode, and stratified by socio-economic disadvantage. Results: This study covered July – December 2009 with data from 10,064 patients. People from the highest SEIFA group (least disadvantaged) were significantly less likely to be referred to a specialist palliative care service, likely to be referred closer to death and to have more episodes of inpatient care for longer time. Physical proximity of a person’s home to inpatient care showed a gradient with increasing distance by decreasing levels of socio-economic advantage. Conclusion: These data suggest that a simple relationship of low socioeconomic status and poor access to a referral-based specialty such as palliative care does not exist. Different patterns of referral and hence different patterns of care emerge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modelling video sequences by subspaces has recently shown promise for recognising human actions. Subspaces are able to accommodate the effects of various image variations and can capture the dynamic properties of actions. Subspaces form a non-Euclidean and curved Riemannian manifold known as a Grassmann manifold. Inference on manifold spaces usually is achieved by embedding the manifolds in higher dimensional Euclidean spaces. In this paper, we instead propose to embed the Grassmann manifolds into reproducing kernel Hilbert spaces and then tackle the problem of discriminant analysis on such manifolds. To achieve efficient machinery, we propose graph-based local discriminant analysis that utilises within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, respectively. Experiments on KTH, UCF Sports, and Ballet datasets show that the proposed approach obtains marked improvements in discrimination accuracy in comparison to several state-of-the-art methods, such as the kernel version of affine hull image-set distance, tensor canonical correlation analysis, spatial-temporal words and hierarchy of discriminative space-time neighbourhood features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of public space by children and young people is a contentious issue in a number of developed and developing countries and a range of measures are frequently deployed to control the public space which usually deny the rights of children and young people to claim the space for their use. Child and youth curfews, oppressive camera surveillance and the unwarranted attentions of police and private security personnel as control measures in public space undermine attempts to secure greater participation by children and young people in constructing positive strategies to address concerns that impact on them and others in a local area. Evidence from research in Scotland undertaken by Article 12 (2000) suggests that young people felt strongly that they did not count in local community matters and decision making and the imposition on them of a curfew by the adult world of the local area created resentment both at the harshness of the measure and disappointment at an opportunity lost to be consulted and involved in dealing with perceived problems of the locality. This is an important cluster of linked issues as Brown (1998:116) argues that young people are ‘selectively constructed as “problem” and “other” with their concerns marginalised, their lifestyles problematised and their voices subdued’, and this flows into their use of public space as their claims to its use as an aspect of social citizenship are usually cast as inferior or rejected as they ‘stand outside the formal polity’ as ‘non persons’. This has major implications for the ways in which young people view their position in a community as many report a feeling of not being wanted, valued or tolerated. The ‘youth question’ according to Davis (1990) acts as a form of ‘screen’ on which observers and analysts project hopes and fears about the state of society, while in the view of Loader (1996:89) the ‘question of young people’ sits within a discourse comprising two elements, the one being youth, particularly young males, as the ‘harbinger of often unwelcome social change and threat’ and the other element ‘constructs young people as vulnerable’. This discourse of threat is further exemplified in the separation of children from teenagers as Valentine (1996) suggests, the treatment of younger children using public space is often dramatically different to that of older children and the most feared stage of all, 'youth'

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retrieving information from Twitter is always challenging due to its large volume, inconsistent writing and noise. Most existing information retrieval (IR) and text mining methods focus on term-based approach, but suffers from the problems of terms variation such as polysemy and synonymy. This problem deteriorates when such methods are applied on Twitter due to the length limit. Over the years, people have held the hypothesis that pattern-based methods should perform better than term-based methods as it provides more context, but limited studies have been conducted to support such hypothesis especially in Twitter. This paper presents an innovative framework to address the issue of performing IR in microblog. The proposed framework discover patterns in tweets as higher level feature to assign weight for low-level features (i.e. terms) based on their distributions in higher level features. We present the experiment results based on TREC11 microblog dataset and shows that our proposed approach significantly outperforms term-based methods Okapi BM25, TF-IDF and pattern based methods, using precision, recall and F measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a framework for both gradient descent image and object alignment in the Fourier domain. Our method centers upon the classical Lucas & Kanade (LK) algorithm where we represent the source and template/model in the complex 2D Fourier domain rather than in the spatial 2D domain. We refer to our approach as the Fourier LK (FLK) algorithm. The FLK formulation is advantageous when one pre-processes the source image and template/model with a bank of filters (e.g. oriented edges, Gabor, etc.) as: (i) it can handle substantial illumination variations, (ii) the inefficient pre-processing filter bank step can be subsumed within the FLK algorithm as a sparse diagonal weighting matrix, (iii) unlike traditional LK the computational cost is invariant to the number of filters and as a result far more efficient, and (iv) this approach can be extended to the inverse compositional form of the LK algorithm where nearly all steps (including Fourier transform and filter bank pre-processing) can be pre-computed leading to an extremely efficient and robust approach to gradient descent image matching. Further, these computational savings translate to non-rigid object alignment tasks that are considered extensions of the LK algorithm such as those found in Active Appearance Models (AAMs).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the field of face recognition, Sparse Representation (SR) has received considerable attention during the past few years. Most of the relevant literature focuses on holistic descriptors in closed-set identification applications. The underlying assumption in SR-based methods is that each class in the gallery has sufficient samples and the query lies on the subspace spanned by the gallery of the same class. Unfortunately, such assumption is easily violated in the more challenging face verification scenario, where an algorithm is required to determine if two faces (where one or both have not been seen before) belong to the same person. In this paper, we first discuss why previous attempts with SR might not be applicable to verification problems. We then propose an alternative approach to face verification via SR. Specifically, we propose to use explicit SR encoding on local image patches rather than the entire face. The obtained sparse signals are pooled via averaging to form multiple region descriptors, which are then concatenated to form an overall face descriptor. Due to the deliberate loss spatial relations within each region (caused by averaging), the resulting descriptor is robust to misalignment & various image deformations. Within the proposed framework, we evaluate several SR encoding techniques: l1-minimisation, Sparse Autoencoder Neural Network (SANN), and an implicit probabilistic technique based on Gaussian Mixture Models. Thorough experiments on AR, FERET, exYaleB, BANCA and ChokePoint datasets show that the proposed local SR approach obtains considerably better and more robust performance than several previous state-of-the-art holistic SR methods, in both verification and closed-set identification problems. The experiments also show that l1-minimisation based encoding has a considerably higher computational than the other techniques, but leads to higher recognition rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design and construction community has shown increasing interest in adopting building information models (BIMs). The richness of information provided by BIMs has the potential to streamline the design and construction processes by enabling enhanced communication, coordination, automation and analysis. However, there are many challenges in extracting construction-specific information out of BIMs. In most cases, construction practitioners have to manually identify the required information, which is inefficient and prone to error, particularly for complex, large-scale projects. This paper describes the process and methods we have formalized to partially automate the extraction and querying of construction-specific information from a BIM. We describe methods for analyzing a BIM to query for spatial information that is relevant for construction practitioners, and that is typically represented implicitly in a BIM. Our approach integrates ifcXML data and other spatial data to develop a richer model for construction users. We employ custom 2D topological XQuery predicates to answer a variety of spatial queries. The validation results demonstrate that this approach provides a richer representation of construction-specific information compared to existing BIM tools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of ventilation distribution is currently performed using inhaled tracer gases for multiple breath inhalation studies or imaging techniques to quantify spatial gas distribution. Most tracer gases used for these studies have properties different from that of air. The effect of gas density on regional ventilation distribution has not been studied. This study aimed to measure the effect of gas density on regional ventilation distribution. Methods Ventilation distribution was measured in seven rats using electrical impedance tomography (EIT) in supine, prone, left and right lateral positions while being mechanically ventilated with either air, heliox (30% oxygen, 70% helium) or sulfur hexafluoride (20% SF6, 20% oxygen, 60% air). The effect of gas density on regional ventilation distribution was assessed. Results Gas density did not impact on regional ventilation distribution. The non-dependent lung was better ventilated in all four body positions. Gas density had no further impact on regional filling characteristics. The filling characteristics followed an anatomical pattern with the anterior and left lung showing a greater impedance change during the initial phase of the inspiration. Conclusion It was shown that gas density did not impact on convection dependent ventilation distribution in rats measured with EIT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finding and labelling semantic features patterns of documents in a large, spatial corpus is a challenging problem. Text documents have characteristics that make semantic labelling difficult; the rapidly increasing volume of online documents makes a bottleneck in finding meaningful textual patterns. Aiming to deal with these issues, we propose an unsupervised documnent labelling approach based on semantic content and feature patterns. A world ontology with extensive topic coverage is exploited to supply controlled, structured subjects for labelling. An algorithm is also introduced to reduce dimensionality based on the study of ontological structure. The proposed approach was promisingly evaluated by compared with typical machine learning methods including SVMs, Rocchio, and kNN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A big challenge for classification on text is the noisy of text data. It makes classification quality low. Many classification process can be divided into two sequential steps scoring and threshold setting (thresholding). Therefore to deal with noisy data problem, it is important to describe positive feature effectively scoring and to set a suitable threshold. Most existing text classifiers do not concentrate on these two jobs. In this paper, we propose a novel text classifier with pattern-based scoring that describe positive feature effectively, followed by threshold setting. The thresholding is based on score of training set, make it is simple to implement in other scoring methods. Experiment shows that our pattern-based classifier is promising.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly sensitive infrared (IR) cameras provide high-resolution diagnostic images of the temperature and vascular changes of breasts. These images can be processed to emphasize hot spots that exhibit early and subtle changes owing to pathology. The resulting images show clusters that appear random in shape and spatial distribution but carry class dependent information in shape and texture. Automated pattern recognition techniques are challenged because of changes in location, size and orientation of these clusters. Higher order spectral invariant features provide robustness to such transformations and are suited for texture and shape dependent information extraction from noisy images. In this work, the effectiveness of bispectral invariant features in diagnostic classification of breast thermal images into malignant, benign and normal classes is evaluated and a phase-only variant of these features is proposed. High resolution IR images of breasts, captured with measuring accuracy of ±0.4% (full scale) and temperature resolution of 0.1 °C black body, depicting malignant, benign and normal pathologies are used in this study. Breast images are registered using their lower boundaries, automatically extracted using landmark points whose locations are learned during training. Boundaries are extracted using Canny edge detection and elimination of inner edges. Breast images are then segmented using fuzzy c-means clustering and the hottest regions are selected for feature extraction. Bispectral invariant features are extracted from Radon projections of these images. An Adaboost classifier is used to select and fuse the best features during training and then classify unseen test images into malignant, benign and normal classes. A data set comprising 9 malignant, 12 benign and 11 normal cases is used for evaluation of performance. Malignant cases are detected with 95% accuracy. A variant of the features using the normalized bispectrum, which discards all magnitude information, is shown to perform better for classification between benign and normal cases, with 83% accuracy compared to 66% for the original.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has not yet been established whether the spatial variation of particle number concentration (PNC) within a microscale environment can have an effect on exposure estimation results. In general, the degree of spatial variation within microscale environments remains unclear, since previous studies have only focused on spatial variation within macroscale environments. The aims of this study were to determine the spatial variation of PNC within microscale school environments, in order to assess the importance of the number of monitoring sites on exposure estimation. Furthermore, this paper aims to identify which parameters have the largest influence on spatial variation, as well as the relationship between those parameters and spatial variation. Air quality measurements were conducted for two consecutive weeks at each of the 25 schools across Brisbane, Australia. PNC was measured at three sites within the grounds of each school, along with the measurement of meteorological and several other air quality parameters. Traffic density was recorded for the busiest road adjacent to the school. Spatial variation at each school was quantified using coefficient of variation (CV). The portion of CV associated with instrument uncertainty was found to be 0.3 and therefore, CV was corrected so that only non-instrument uncertainty was analysed in the data. The median corrected CV (CVc) ranged from 0 to 0.35 across the schools, with 12 schools found to exhibit spatial variation. The study determined the number of required monitoring sites at schools with spatial variability and tested the deviation in exposure estimation arising from using only a single site. Nine schools required two measurement sites and three schools required three sites. Overall, the deviation in exposure estimation from using only one monitoring site was as much as one order of magnitude. The study also tested the association of spatial variation with wind speed/direction and traffic density, using partial correlation coefficients to identify sources of variation and non-parametric function estimation to quantify the level of variability. Traffic density and road to school wind direction were found to have a positive effect on CVc, and therefore, also on spatial variation. Wind speed was found to have a decreasing effect on spatial variation when it exceeded a threshold of 1.5 (m/s), while it had no effect below this threshold. Traffic density had a positive effect on spatial variation and its effect increased until it reached a density of 70 vehicles per five minutes, at which point its effect plateaued and did not increase further as a result of increasing traffic density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews the growing influence of human rights issues on land rights, administration, management and tenure. In the last few decades, attention focussed on integrating economic and environmental considerations to achieve sustainable land use. The World Trade Organisation began in 1995. As a condition of membership, nations undertook legislative programmes aimed at reducing price distortions and barriers to international trade. Reducing trade barriers has direct effects on agricultural production as a major land use. Similarly, as signatories to the 1992 Rio Declaration, nations undertook caring for and reporting on the state of the environment. However, quality of life is also an issue in deciding what is sustainable development. The Universal Declaration of Human Rights, proclaimed in 1948, provided a framework for a series of international human rights conventions. These conventions now influence national legislative programmes. The purpose of this paper is to review some of the implications of human rights on rights in land and the production and use of spatial information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological systems involving proliferation, migration and death are observed across all scales. For example, they govern cellular processes such as wound-healing, as well as the population dynamics of groups of organisms. In this paper, we provide a simplified method for correcting mean-field approximations of volume-excluding birth-death-movement processes on a regular lattice. An initially uniform distribution of agents on the lattice may give rise to spatial heterogeneity, depending on the relative rates of proliferation, migration and death. Many frameworks chosen to model these systems neglect spatial correlations, which can lead to inaccurate predictions of their behaviour. For example, the logistic model is frequently chosen, which is the mean-field approximation in this case. This mean-field description can be corrected by including a system of ordinary differential equations for pair-wise correlations between lattice site occupancies at various lattice distances. In this work we discuss difficulties with this method and provide a simplication, in the form of a partial differential equation description for the evolution of pair-wise spatial correlations over time. We test our simplified model against the more complex corrected mean-field model, finding excellent agreement. We show how our model successfully predicts system behaviour in regions where the mean-field approximation shows large discrepancies. Additionally, we investigate regions of parameter space where migration is reduced relative to proliferation, which has not been examined in detail before, and our method is successful at correcting the deviations observed in the mean-field model in these parameter regimes.