381 resultados para secure protocal
Resumo:
Food insecurity is the limited availability of, or access to, sufficient amounts of nutritious, culturally-appropriate and safe foods, or the inability to access such foods by socially-acceptable means. Evidence from the United States and Canada suggests that food insecurity may be associated with poor dietary intakes, obesity, and chronic disease including depression and diabetes, thus constituting a significant public health issue. Currently, no existing studies have investigated the dietary and health factors associated with food insecurity among the general Australian population. The current study investigated the potential associations between food insecurity, diet and health among Australian adults (18 years and over) participating in the cross-sectional National Health Survey (n = 19,500). Data were analysed by logistic regression adjusting for sociodemographic covariates. Those from food insecure households were 50% less likely to consume the recommended number of servings of fruit, 60% more likely to report poor health and experienced a 6-fold increase in the risk of severe depressive disorders, compared to their food secure counterparts. Furthermore, food insecurity was associated with a 50% increase in the risk of being diagnosed with ‘high sugar levels’. Finally, women from food insecure households were 30% more likely to be obese compared to their food secure counterparts. These findings suggest that food insecurity may play an important role in preventing adherence with national dietary recommendations, and may increase the risk of obesity and chronic illness. This has important implications for both clinical practice, and the development of interventions and policy to address food insecurity.
Resumo:
This paper extends the understanding of working-time changes and work-life balance (WLB) through analyzing a case study where a reduction in working hours designed to assist the workforce in balancing work and nonwork life was implemented. An alliance project in the Australian construction industry was established initially with a 5-day working week, a departure from the industry-standard 6-day week. However, a range of factors complicated the success of this initiative, and the industry-standard 6-day working week was reinstated for the project. The authors argue that this case is valuable in determining the complex mix of influences that work against a wholesale or straightforward adoption of working-time adjustments and work-life balance practices. It is concluded that although the prevailing workplace culture is considered an important factor in the determination of working time, structural and workplace principles and practices may also be critical in working to secure the successful introduction of working-time reduction and work-life balance initiatives in the construction industry in the future.
Resumo:
This paper presents a model for generating a MAC tag by injecting the input message directly into the internal state of a nonlinear filter generator. This model generalises a similar model for unkeyed hash functions proposed by Nakano et al. We develop a matrix representation for the accumulation phase of our model and use it to analyse the security of the model against man-in-the-middle forgery attacks based on collisions in the final register contents. The results of this analysis show that some conclusions of Nakano et al regarding the security of their model are incorrect. We also use our results to comment on several recent MAC proposals which can be considered as instances of our model and specify choices of options within the model which should prevent the type of forgery discussed here. In particular, suitable initialisation of the register and active use of a secure nonlinear filter will prevent an attacker from finding a collision in the final register contents which could result in a forged MAC.
Resumo:
This article assesses undergraduate teaching students’ assertion that there are no right and wrong answers in teaching philosophy. When asked questions about their experiences of philosophy in the classroom for primary children, their unanimous declaration that teaching philosophy has ‘no right and wrong answers’ is critically examined across the three sub-disciplinary areas to which they were generally referring, namely, pedagogy, ethics, and epistemology. From a pedagogical point of view, it is argued that some teaching approaches may indeed be more effective than others, and some pupils’ opinions less defensible, but pedagogically, in terms of managing the power relations in the classroom, it is counter-productive to continually insist on notions of truth and falsity at every point. From an ethical point of view, it is contended that anti-realist approaches to meta-ethics may represent a viable intellectual position, but from the point of view of normative ethics, notions of right and wrong still retain significant currency. From an epistemological point of view, it is argued using Karl Poppers’ work that while it may be difficult to determine what constitutes a right answer, determining a wrong one is far more straightforward. In conclusion, it is clear that prospective teachers engaging in philosophy in the classroom, and also future teachers in general, require a far more nuanced philosophical understanding of the notions of right and wrong and truth and falsity. In view of this situation, it we wish to promote the effective teaching of philosophical thinking to children, or produce educators who can understand the conceptual limits of the claims they make and their very real and often serious practical and social consequences, it is recommended that philosophy be reinstated to a fundamental, foundational place within the pre-service teaching curriculum.
Resumo:
Security indicators in web browsers alert users to the presence of a secure connection between their computer and a web server; many studies have shown that such indicators are largely ignored by users in general. In other areas of computer security, research has shown that technical expertise can decrease user susceptibility to attacks. In this work, we examine whether computer or security expertise affects use of web browser security indicators. Our study takes place in the context of web-based single sign-on, in which a user can use credentials from a single identity provider to login to many relying websites; single sign-on is a more complex, and hence more difficult, security task for users. In our study, we used eye trackers and surveyed participants to examine the cues individuals use and those they report using, respectively. Our results show that users with security expertise are more likely to self-report looking at security indicators, and eye-tracking data shows they have longer gaze duration at security indicators than those without security expertise. However, computer expertise alone is not correlated with recorded use of security indicators. In survey questions, neither experts nor novices demonstrate a good understanding of the security consequences of web-based single sign-on.
Resumo:
Secure communications in wireless sensor networks operating under adversarial conditions require providing pairwise (symmetric) keys to sensor nodes. In large scale deployment scenarios, there is no prior knowledge of post deployment network configuration since nodes may be randomly scattered over a hostile territory. Thus, shared keys must be distributed before deployment to provide each node a key-chain. For large sensor networks it is infeasible to store a unique key for all other nodes in the key-chain of a sensor node. Consequently, for secure communication either two nodes have a key in common in their key-chains and they have a wireless link between them, or there is a path, called key-path, among these two nodes where each pair of neighboring nodes on this path have a key in common. Length of the key-path is the key factor for efficiency of the design. This paper presents novel deterministic and hybrid approaches based on Combinatorial Design for deciding how many and which keys to assign to each key-chain before the sensor network deployment. In particular, Balanced Incomplete Block Designs (BIBD) and Generalized Quadrangles (GQ) are mapped to obtain efficient key distribution schemes. Performance and security properties of the proposed schemes are studied both analytically and computationally. Comparison to related work shows that the combinatorial approach produces better connectivity with smaller key-chain sizes.
Resumo:
The use of public space by children and young people is a contentious issue in a number of developed and developing countries and a range of measures are frequently deployed to control the public space which usually deny the rights of children and young people to claim the space for their use. Child and youth curfews, oppressive camera surveillance and the unwarranted attentions of police and private security personnel as control measures in public space undermine attempts to secure greater participation by children and young people in constructing positive strategies to address concerns that impact on them and others in a local area. Evidence from research in Scotland undertaken by Article 12 (2000) suggests that young people felt strongly that they did not count in local community matters and decision making and the imposition on them of a curfew by the adult world of the local area created resentment both at the harshness of the measure and disappointment at an opportunity lost to be consulted and involved in dealing with perceived problems of the locality. This is an important cluster of linked issues as Brown (1998:116) argues that young people are ‘selectively constructed as “problem” and “other” with their concerns marginalised, their lifestyles problematised and their voices subdued’, and this flows into their use of public space as their claims to its use as an aspect of social citizenship are usually cast as inferior or rejected as they ‘stand outside the formal polity’ as ‘non persons’. This has major implications for the ways in which young people view their position in a community as many report a feeling of not being wanted, valued or tolerated. The ‘youth question’ according to Davis (1990) acts as a form of ‘screen’ on which observers and analysts project hopes and fears about the state of society, while in the view of Loader (1996:89) the ‘question of young people’ sits within a discourse comprising two elements, the one being youth, particularly young males, as the ‘harbinger of often unwelcome social change and threat’ and the other element ‘constructs young people as vulnerable’. This discourse of threat is further exemplified in the separation of children from teenagers as Valentine (1996) suggests, the treatment of younger children using public space is often dramatically different to that of older children and the most feared stage of all, 'youth'
Resumo:
To protect the health information security, cryptography plays an important role to establish confidentiality, authentication, integrity and non-repudiation. Keys used for encryption/decryption and digital signing must be managed in a safe, secure, effective and efficient fashion. The certificate-based Public Key Infrastructure (PKI) scheme may seem to be a common way to support information security; however, so far, there is still a lack of successful large-scale certificate-based PKI deployment in the world. In addressing the limitations of the certificate-based PKI scheme, this paper proposes a non-certificate-based key management scheme for a national e-health implementation. The proposed scheme eliminates certificate management and complex certificate validation procedures while still maintaining security. It is also believed that this study will create a new dimension to the provision of security for the protection of health information in a national e-health environment.
Resumo:
Discourses of public education reform, like that exemplified within the Queensland Government’s future vision document, Queensland State Education-2010 (QSE-2010), position schooling as a panacea to pervasive social instability and a means to achieve a new consensus. However, in unravelling the many conflicting statements that conjoin to form education policy and inform related literature (Ball, 1993), it becomes clear that education reform discourse is polyvalent (Foucault, 1977). Alongside visionary statements that speak of public education as a vehicle for social justice are the (re)visionary or those reflecting neoliberal individualism and a conservative politics. In this paper, it is argued that the latter coagulate to form strategic discursive practices which work to (re)secure dominant relations of power. Further, discussion of the characteristics needed by the “ideal” future citizen of Queensland reflect efforts to ‘tame change through the making of the child’ (Popkewitz, 2004, p.201). The casualties of this (re)vision and the refusal to investigate the pathologies of “traditional” schooling are the children who, for whatever reason, do not conform to the norm of the desired school child as an “ideal” citizen-in-the-making and who become relegated to alternative educational settings.
Resumo:
Secure communications between large number of sensor nodes that are randomly scattered over a hostile territory, necessitate efficient key distribution schemes. However, due to limited resources at sensor nodes such schemes cannot be based on post deployment computations. Instead, pairwise (symmetric) keys are required to be pre-distributed by assigning a list of keys, (a.k.a. key-chain), to each sensor node. If a pair of nodes does not have a common key after deployment then they must find a key-path with secured links. The objective is to minimize the keychain size while (i) maximizing pairwise key sharing probability and resilience, and (ii) minimizing average key-path length. This paper presents a deterministic key distribution scheme based on Expander Graphs. It shows how to map the parameters (e.g., degree, expansion, and diameter) of a Ramanujan Expander Graph to the desired properties of a key distribution scheme for a physical network topology.
Resumo:
In the modern connected world, pervasive computing has become reality. Thanks to the ubiquity of mobile computing devices and emerging cloud-based services, the users permanently stay connected to their data. This introduces a slew of new security challenges, including the problem of multi-device key management and single-sign-on architectures. One solution to this problem is the utilization of secure side-channels for authentication, including the visual channel as vicinity proof. However, existing approaches often assume confidentiality of the visual channel, or provide only insufficient means of mitigating a man-in-the-middle attack. In this work, we introduce QR-Auth, a two-step, 2D barcode based authentication scheme for mobile devices which aims specifically at key management and key sharing across devices in a pervasive environment. It requires minimal user interaction and therefore provides better usability than most existing schemes, without compromising its security. We show how our approach fits in existing authorization delegation and one-time-password generation schemes, and that it is resilient to man-in-the-middle attacks.
Resumo:
Internet services are important part of daily activities for most of us. These services come with sophisticated authentication requirements which may not be handled by average Internet users. The management of secure passwords for example creates an extra overhead which is often neglected due to usability reasons. Furthermore, password-based approaches are applicable only for initial logins and do not protect against unlocked workstation attacks. In this paper, we provide a non-intrusive identity verification scheme based on behavior biometrics where keystroke dynamics based-on free-text is used continuously for verifying the identity of a user in real-time. We improved existing keystroke dynamics based verification schemes in four aspects. First, we improve the scalability where we use a constant number of users instead of whole user space to verify the identity of target user. Second, we provide an adaptive user model which enables our solution to take the change of user behavior into consideration in verification decision. Next, we identify a new distance measure which enables us to verify identity of a user with shorter text. Fourth, we decrease the number of false results. Our solution is evaluated on a data set which we have collected from users while they were interacting with their mail-boxes during their daily activities.
Resumo:
Private data stored on smartphones is a precious target for malware attacks. A constantly changing environment, e.g. switching network connections, can cause unpredictable threats, and require an adaptive approach to access control. Context-based access control is using dynamic environmental information, including it into access decisions. We propose an "ecosystem-in-an-ecosystem" which acts as a secure container for trusted software aiming at enterprise scenarios where users are allowed to use private devices. We have implemented a proof-of-concept prototype for an access control framework that processes changes to low-level sensors and semantically enriches them, adapting access control policies to the current context. This allows the user or the administrator to maintain fine-grained control over resource usage by compliant applications. Hence, resources local to the trusted container remain under control of the enterprise policy. Our results show that context-based access control can be done on smartphones without major performance impact.
Resumo:
Secure communications in distributed Wireless Sensor Networks (WSN) operating under adversarial conditions necessitate efficient key management schemes. In the absence of a priori knowledge of post-deployment network configuration and due to limited resources at sensor nodes, key management schemes cannot be based on post-deployment computations. Instead, a list of keys, called a key-chain, is distributed to each sensor node before the deployment. For secure communication, either two nodes should have a key in common in their key-chains, or they should establish a key through a secure-path on which every link is secured with a key. We first provide a comparative survey of well known key management solutions for WSN. Probabilistic, deterministic and hybrid key management solutions are presented, and they are compared based on their security properties and re-source usage. We provide a taxonomy of solutions, and identify trade-offs in them to conclude that there is no one size-fits-all solution. Second, we design and analyze deterministic and hybrid techniques to distribute pair-wise keys to sensor nodes before the deployment. We present novel deterministic and hybrid approaches based on combinatorial design theory and graph theory for deciding how many and which keys to assign to each key-chain before the sensor network deployment. Performance and security of the proposed schemes are studied both analytically and computationally. Third, we address the key establishment problem in WSN which requires key agreement algorithms without authentication are executed over a secure-path. The length of the secure-path impacts the power consumption and the initialization delay for a WSN before it becomes operational. We formulate the key establishment problem as a constrained bi-objective optimization problem, break it into two sub-problems, and show that they are both NP-Hard and MAX-SNP-Hard. Having established inapproximability results, we focus on addressing the authentication problem that prevents key agreement algorithms to be used directly over a wireless link. We present a fully distributed algorithm where each pair of nodes can establish a key with authentication by using their neighbors as the witnesses.