266 resultados para oxygen-sensing pathway


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen enriched, porous fuel injection has been numerically investigated in this study with the aim of understanding mixing and combustion enhancements achievable in a viable scramjet engine. Four injection configurations were studied: a fuel only case, a pre-mixed case and two staged injection cases where fuel and oxidiser were injected independently. All simulations were performed on a flight scale vehicle at Mach 8 flow conditions. Results show that the addition of oxygen with the fuel increases the mixing efficiency of the engine, however, is less sensitive to the method of oxygen addition: premixed versus staged. When the fuel-oxidiser-air mixture was allowed to combust, the method of additional oxygen delivery had a more significant impact. For pre-mixed fuel and oxidiser, the engine was found to choke, whereas in contrast, in the staged enrichment cases the engine failed to ignite. This result indicates that there exists an optimised configuration between pre-mixed and staged oxygen enrichment which results in a started, and combusting engine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irregular atrial pressure, defective folate and cholesterol metabolism contribute to the pathogenesis of hypertension. However, little is known about the combined roles of the methylenetetrahydrofolate reductase (MTHFR), apolipoprotein-E (ApoE) and angiotensin-converting enzyme (ACE) genes, which are involved in metabolism and homeostasis. The objective of this study is to investigate the association of the MTHFR 677 C>T and 1298A>C, ACE insertion–deletion (I/D) and ApoE genetic polymorphisms with hypertension and to further explore the epistasis interactions that are involved in these mechanisms. A total of 594 subjects, including 348 normotensive and 246 hypertensive ischemic stroke subjects were recruited. The MTHFR 677 C>T and 1298A>C, ACE I/D and ApoEpolymorphisms were genotyped and the epistasis interaction were analyzed. The MTHFR 677 C>T and ApoE polymorphisms demonstrated significant associations with susceptibility to hypertension in multiple logistic regression models, multifactor dimensionality reduction and a classification and regression tree. In addition, the logistic regression model demonstrated that significant interactions between the ApoE E3E3, E2E4, E2E2 and MTHFR 677 C>T polymorphisms existed. In conclusion, the results of this epistasis study indicated significant association between the ApoE and MTHFR polymorphisms and hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Canonical Wnt signaling is important in tooth development but it is unclear whether it can induce cementogenesis and promote the regeneration of periodontal tissues lost due to disease. Therefore, the aim of this study is to investigate the influence of canonical Wnt signaling enhancers on human periodontal ligament cell (hPDLCs) cementogenic differentiation in vitro and cementum repair in a rat periodontal defect model. Canonical Wnt signaling was induced by (i) local injection of lithium chloride; (ii) local injection of sclerostin antibody; and (iii) local injection of a lentiviral construct overexpressing β-catenin. The results showed that the local activation of canonical Wnt signaling resulted in significant new cellular cementum deposition and the formation of well-organized periodontal ligament fibers, which was absent in the control group. In vitro experiments using hPDLCs showed that the Wnt signaling pathway activators significantly increased mineralization, alkaline phosphatase (ALP) activity, and gene and protein expression of the bone and cementum markers osteocalcin (OCN), osteopontin (OPN), cementum protein 1 (CEMP1), and cementum attachment protein (CAP). Our results show that the activation of the canonical Wnt signaling pathway can induce in vivo cementum regeneration and in vitro cementogenic differentiation of hPDLCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the experimental testing of oxygen-enriched porous fuel injection in a scramjet engine. Fuel was injected via inlet mounted, oxide-based ceramic matrix composite (CMC) injectors on both flow path surfaces that covered a total of 9.2 % of the intake surface area. All experiments were performed at an enthalpy of 3.93−4.25±3.2% MJ kg−1, flight Mach number 9.2–9.6 and an equivalence ratio of 0.493±3%. At this condition, the engine was shown to be on the verge of achieving appreciable combustion. Oxygen was then added to the fuel prior to injection such that two distinct enrichment levels were achieved. Combustion was found to increase, by as much as 40 % in terms of combustion-induced pressure rise, over the fuel-only case with increasing oxygen enrichment. Further, the onset of combustion was found to move upstream with increasing levels of oxygen enrichment. Thrust, both uninstalled and specific, and specific impulse were found to be improved with oxygen enrichment. Enhanced fuel–air mixing due to the pre-mixing of oxygen with the fuel together with the porous fuel injection are believed to be the main contributors to the observed enhanced performance of the tested engine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ever growing populations in cities are associated with a major increase in road vehicles and air pollution. The overall high levels of urban air pollution have been shown to be of a significant risk to city dwellers. However, the impacts of very high but temporally and spatially restricted pollution, and thus exposure, are still poorly understood. Conventional approaches to air quality monitoring are based on networks of static and sparse measurement stations. However, these are prohibitively expensive to capture tempo-spatial heterogeneity and identify pollution hotspots, which is required for the development of robust real-time strategies for exposure control. Current progress in developing low-cost micro-scale sensing technology is radically changing the conventional approach to allow real-time information in a capillary form. But the question remains whether there is value in the less accurate data they generate. This article illustrates the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, whilst addressing the major challenges for their effective implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe our experiences with automating a large fork-lift type vehicle that operates outdoors and in all weather. In particular, we focus on the use of independent and robust localisation systems for reliable navigation around the worksite. Two localisation systems are briefly described. The first is based on laser range finders and retro-reflective beacons, and the second uses a two camera vision system to estimate the vehicle’s pose relative to a known model of the surrounding buildings. We show the results from an experiment where the 20 tonne experimental vehicle, an autonomous Hot Metal Carrier, was conducting autonomous operations and one of the localisation systems was deliberately made to fail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoporous Nb2O5 has been previously demonstrated to be a viable electrochromic material with strong intercalation characteristics. Despite showing such promising properties, its potential for optical gas sensing applications, which involves the production of ionic species such as H+, has yet to be explored. Nanoporous Nb2O5 can accommodate a large amount of H+ ions in a process that results in an energy bandgap change of the material, which induces an optical response. Here, we demonstrate the optical hydrogen gas (H¬2) sensing capability of nanoporous anodic Nb2O5 with a large surface-to-volume ratio prepared via a high temperature anodization method. The large active surface area of the film provides enhanced pathways for efficient hydrogen adsorption and dissociation, which are facilitated by a thin layer of Pt catalyst. We show that the process of H2 sensing causes optical modulations that are investigated in terms of response magnitudes and dynamics. The optical modulations induced by the intercalation process and sensing properties of nanoporous anodic Nb2O5 shown in this work can potentially be used for future optical gas sensing systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water to air methane emissions from freshwater reservoirs can be dominated by sediment bubbling (ebullitive) events. Previous work to quantify methane bubbling from a number of Australian sub-tropical reservoirs has shown that this can contribute as much as 95% of total emissions. These bubbling events are controlled by a variety of different factors including water depth, surface and internal waves, wind seiching, atmospheric pressure changes and water levels changes. Key to quantifying the magnitude of this emission pathway is estimating both the bubbling rate as well as the areal extent of bubbling. Both bubbling rate and areal extent are seldom constant and require persistent monitoring over extended time periods before true estimates can be generated. In this paper we present a novel system for persistent monitoring of both bubbling rate and areal extent using multiple robotic surface chambers and adaptive sampling (grazing) algorithms to automate the quantification process. Individual chambers are self-propelled and guided and communicate between each other without the need for supervised control. They can maintain station at a sampling site for a desired incubation period and continuously monitor, record and report fluxes during the incubation. To exploit the methane sensor detection capabilities, the chamber can be automatically lowered to decrease the head-space and increase concentration. The grazing algorithms assign a hierarchical order to chambers within a preselected zone. Chambers then converge on the individual recording the highest 15 minute bubbling rate. Individuals maintain a specified distance apart from each other during each sampling period before all individuals are then required to move to different locations based on a sampling algorithm (systematic or adaptive) exploiting prior measurements. This system has been field tested on a large-scale subtropical reservoir, Little Nerang Dam, and over monthly timescales. Using this technique, localised bubbling zones on the water storage were found to produce over 50,000 mg m-2 d-1 and the areal extent ranged from 1.8 to 7% of the total reservoir area. The drivers behind these changes as well as lessons learnt from the system implementation are presented. This system exploits relatively cheap materials, sensing and computing and can be applied to a wide variety of aquatic and terrestrial systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mining industry is highly suitable for the application of robotics and automation technology since the work is arduous, dangerous and often repetitive. This paper discusses a robust sensing system developed to find and trade the position of the hoist ropes of a dragline. Draglines are large `walking cranes' used in open-pit coal mining to remove the material covering the coal seam. The rope sensing system developed uses two time-of-flight laser scanners. The finding algorithm uses a novel data association and tracking strategy based on pairing rope data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis examined the use of acoustic sensors for monitoring avian biodiversity. Acoustic sensors have the potential to significantly increase the spatial and temporal scale of ecological observations, however acoustic recordings of the environment can be opaque and complex. This thesis developed methods for analysing large volumes of acoustic data to maximise the detection of bird species, and compared the results of acoustic sensor biodiversity surveys with traditional bird survey techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the development of nanoporous tungsten trioxide (WO3) Schottky diode-based gas sensors. Nanoporous WO3 films were prepared by anodic oxidation of tungsten foil in ethylene glycol mixed with ammonium fluoride and a small amount of water. Anodization resulted in highly ordered WO3 films with a large surface-to-volume ratio. Utilizing these nanoporous structures, Schottky diode-based gas sensors were developed by depositing a platinum (Pt) catalytic contact and tested towards hydrogen gas and ethanol vapour. Analysis of the current–voltage characteristics and dynamic responses of the sensors indicated that these devices exhibited a larger voltage shift in the presence of hydrogen gas compared to ethanol vapour at an optimum operating temperature of 200 °C. The gas sensing mechanism was discussed, associating the response to the intercalating H+ species that are generated as a result of hydrogen and ethanol molecule breakdowns onto the Pt/WO3 contact and their spill over into nanoporous WO3.