279 resultados para organic ionic plastic crystals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel solution-processable non-fullerene electron acceptor 6,6′-(5,5′-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis(thiophene-5,2-diyl))bis(2,5-bis(2-ethylhexyl)-3-(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione) (DPP1) based on fluorene and diketopyrrolopyrrole conjugated moieties was designed, synthesized and fully characterized. DPP1 exhibited excellent solubility and high thermal stability which are essential for easy processing. Upon using DPP1 as an acceptor with the classical electron donor poly(3-hexylthiophene), solution processable bulk-heterojunction solar cells afforded a power conversion efficiency of 1.2% with a high open-circuit voltage (1.1 V). As per our knowledge, this value of open circuit voltage is one of the highest values reported so far for a bulk-heterojunction device using DPP1 as a non-fullerene acceptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge management (KM) strategy is the planned or actual coordination of a firm's major goals and learning in time; this coordination continually co-aligns the firm's knowledge-based resources with the environment. Based on the organic perspective of strategy, a KM performance evaluation approach should be able to 1) review the knowledge governance mechanisms and learning routines that underpin the KM strategy, as well as the performance outcomes driven by the strategy, and 2) predict the evolution of performance drivers and outcomes into the future to facilitate strategic planning. This study combined a survey study and a system dynamics (SD) simulation to demonstrate the transformation from a mechanistic to an organic perspective on KM strategy and performance evaluation. The survey study was conducted based on a sample of 143 construction contractors and used structural equation modeling (SEM) techniques to develop a KM performance index for reviewing the key elements that underpin KM strategy. The SD simulation predicted the development of KM strategy configurations and the evolution of KM performance over time. The organic KM performance evaluation approach demonstrated by this study has significant potential to improve the alignment of KM strategy within an increasingly dynamic business environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infectious diseases such as SARS, influenza and bird flu may spread exponentially throughout communities. In fact, most infectious diseases remain major health risks due to the lack of vaccine or the lack of facilities to deliver the vaccines. Conventional vaccinations are based on damaged pathogens, live attenuated viruses and viral vectors. If the damage was not complete, the vaccination itself may cause adverse effects. Therefore, researchers have been prompted to prepare viable replacements for the attenuated vaccines that would be more effective and safer to use. DNA vaccines are generally composed of a double stranded plasmid that includes a gene encoding the target antigen under the transcriptional directory and control of a promoter region which is active in cells. Plasmid DNA (pDNA) vaccines allow the foreign genes to be expressed transiently in cells, mimicking intracellular pathogenic infection and inducing both humoral and cellular immune responses. Currently, because of their highly evolved and specialized components, viral systems are the most effective means for DNA delivery, and they achieve high efficiencies (generally >90%), for both DNA delivery and expression. As yet, viral-mediated deliveries have several limitations, including toxicity, limited DNA carrying capacity, restricted target to specific cell types, production and packing problems, and high cost. Thus, nonviral systems, particularly a synthetic DNA delivery system, are highly desirable in both research and clinical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embedding metallic nanoparticles in organic solar cells can enhance the photoabsorption through light trapping processes. This paper investigates how gold islands obtained by annealing 1–5 nm thick Au layers affect the photoabsorption. Using finite-difference time-domain simulations, the cell efficiency for various island geometries and thicknesses are analyzed and the properties of the islands for maximal photocurrent are discussed. It is shown that a careful choice of size and concentration of gold islands could contribute to enhance the power conversion efficiencies when compared to standard organic solar cell devices. The conclusions are then compared to experimental data for thermally annealed gold islands in bulk heterojunction solar cells. The results of this paper will contribute to the optimization of plasmonic organic solar cell systems and will pave the way for the development of highly efficient organic solar cell devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the electropolymerization of poly(3,4-ethylenedioxythiopene) (PEDOT) from an ionic liquid, butyl-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (C4mpyrTFSI) onto flexible carbon cloth electrodes. A continuous, homogeneous and well adhered coating of the individual cloth fibres is achieved by employing a sandwich cell arrangement where the carbon cloth which is soaked with electrolyte is placed between two indium tin oxide electrodes isolated from each other by a battery separator. The resultant PEDOT modified carbon cloth electrode demonstrates excellent activity for the oxygen reduction reaction which is due to the doping level, conductivity and morphology of the PEDOT layer and is also tolerant to the presence of methanol in the electrolyte. This simple approach therefore offers a route to fabricate flexible polymer electrodes that could be used in various electronic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: A strategy that is often used for designing low band gap polymers involves the incorporation of electron-rich (donor) and electron-deficient (acceptor) conjugated segments within the polymer backbone. In this paper we investigate such a series of Diketopyrrolopyrrole (DPP)-based co-polymers. The co-polymers consisted of a DPP unit attached to a phenylene, naphthalene, or anthracene unit. Additionally, polymers utilizing either the thiophene-flanked DPP or the furan-flanked DPP units paired with the naphthalene comonomer were compared. As these polymers have been used as donor materials and subsequent hole transporting materials in organic solar cells, we are specifically interested in characterizing the optical absorption of the hole polaron of these DPP based copolymers. We employ chemical doping, electrochemical doping, and photoinduced absorption (PIA) studies to probe the hole polaron absorption spectra. While some donor-acceptor polymers have shown an appreciable capacity to generate free charge carriers upon photoexcitation, no polaron signal was observed in the PIA spectrum of the polymers in this study. The relations between molecular structure and optical properties are discussed. Keywords: organic solar cell; organic photovoltaic; diketopyrrolopyrrole; chemical doping; spectroelectrochemistry; photoinduced absorption; hole polaron

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technique of photo-CELIV (charge extraction by linearly increasing voltage) is one of the more straightforward and popular approaches to measure the faster carrier mobility in measurement geometries that are relevant for operational solar cells and other optoelectronic devices. It has been used to demonstrate a time-dependent photocarrier mobility in pristine polymers, attributed to energetic relaxation within the density of states. Conversely, in solar cell blends, the presence or absence of such energetic relaxation on transport timescales remains under debate. We developed a complete numerical model and performed photo-CELIV experiments on the model high efficiency organic solar cell blend poly[3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-naphthalene] (PDPP-TNT):[6,6]-phenyl-C71-butyric-acid-methyl-ester (PC70BM). In the studied solar cells a constant, time-independent mobility on the scale relevant to charge extraction was observed, where thermalisation of photocarriers occurs on time scales much shorter than the transit time. Therefore, photocarrier relaxation effects are insignificant for charge transport in these efficient photovoltaic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thiophene–tetrafluorophenyl–thiophene donor–acceptor–donor building block was used in combination with a furan-substituted diketopyrrolopyrrole for synthesizing the polymer semiconductor, PDPPF-TFPT. Due to the balance of tetrafluorophenylene/diketopyrrolopyrrole electron-withdrawing and furan/thiophene electron-donating moieties in the backbone, PDPPF-TFPT exhibits ambipolar behaviour in organic thin-film transistors, with hole and electron mobilities as high as 0.40 cm2 V−1 s−1 and 0.12 cm2 V−1 s−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Children are particularly susceptible to air pollution and schools are examples of urban microenvironments that can account for a large portion of children’s exposure to airborne particles. Thus this paper aimed to determine the sources of primary airborne particles that children are exposed to at school by analyzing selected organic molecular markers at 11 urban schools in Brisbane, Australia. Positive matrix factorization analysis identified four sources at the schools: vehicle emissions, biomass burning, meat cooking and plant wax emissions accounting for 45%, 29%, 16% and 7%, of the organic carbon respectively. Biomass burning peaked in winter due to prescribed burning of bushland around Brisbane. Overall, the results indicated that both local (traffic) and regional (biomass burning) sources of primary organic aerosols influence the levels of ambient particles that children are exposed at the schools. These results have implications for potential control strategies for mitigating exposure at schools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remediation of bisphenol A (BPA) from aqueous solutions by adsorption using organoclays synthesized from montmorillonite (MMT) with different types of organic surfactant molecules was demonstrated. High adsorption capacities of the organoclays for the uptake of BPA were observed and these demonstrated their potential application as strong adsorbents for noxious organic water contaminants. The adsorption of BPA was significantly influenced by pH, with increased adsorption of BPA in acidic pH range. However, the organoclays intercalated with highly loaded surfactants and/or large surfactant molecules were less influenced by the pH of the environment and this was thought to be due to the shielding the negative charge from surfactant molecules and the development of more positive charge on the clay surface, which leads to the attraction of anionic BPA even at alkaline pH. The hydrophobic phase created by loaded surfactant molecules contributed to a partitioning phase, interacting with BPA molecules strongly through hydrophobic interaction. Pseudo-second order kinetic model and Langmuir isotherm provided the best fit for the adsorption of BPA onto the organoclays. In addition, the adsorption process was spontaneous and exothermic with lower temperature facilitating the adsorption of BPA onto the organoclays. The described process provides a potential pathway for the removal of BPA from contaminated waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project was a step forward in developing new recyclable photocatalysts for chemical reactions. These new photocatalysts can facilitate reactions by using visible light under moderate reaction conditions which is suitable for a sustainable, green and eco-friendly modern chemical industry. The outcome of the study greatly extended our understanding in metal nanoparticle photocatalysis, which reveals new photocatalytic mechanisms for the controlled transformation of chemical reactions. The prospect of sunlight irradiation driving chemical reactions may provide opportunity for the organic synthesis via a more controlled, simplified, and greener process in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By taking the advantage of the excellent mechanical properties and high specific surface area of graphene oxide (GO) sheets, we develop a simple and effective strategy to improve the interlaminar mechanical properties of carbon fiber reinforced plastic (CFRP) laminates. With the incorporation of graphene oxide reinforced epoxy interleaf into the interface of CFRP laminates, the Mode-I fracture toughness and resistance were greatly increased. The experimental results of double cantilever beam (DCB) tests demonstrated that, with 2 g/m2 addition of GO, the Mode-I fracture toughness and resistance of the specimen increase by 170.8% and 108.0%, respectively, compared to those of the plain specimen. The improvement mechanisms were investigated by the observation of fracture surface with scanning electron microscopies. Moreover, finite element analyses were performed based on the cohesive zone model to verify the experimental fracture toughness and to predict the interfacial tensile strength of CFRP laminates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increased concern about airborne particles not only because of their environmental effects, but also due to their potential adverse health effects on humans, especially children. Despite the growing evidence of airborne particles having an impact on children’s health, there have been limited studies investigating the long term health effects as well as the chemical composition of ambient air which further helps in determining their toxicity. Therefore, a systematic study on the chemical composition of air in school environment has been carried out in Brisbane, which is known as “Ultrafine Particles from Traffic Emissions on Children’s Health” (UPTECH). This study is also a part of the larger project focusing on analysis of the chemical composition of ambient air, as well as source apportionment and the quantification of ambient concentrations of organic pollutants in the vicinity of schools. However, this particular paper presents some of the results on concentration of different Volatile Organic Compounds in both indoor and outdoor location from different schools. The database consisted of 750 samples (500 outdoor and 250 indoor) collected for VOCs at 25 different schools. The sampling and analysis were conducted following the standard methods. A total of 90 individual VOCs were identified from the schools studied. Compounds such as toluene, acetic acid, nonanal, benzaldehyde, 2- ethyl 1- hexanol, limonene were the most common in indoors whereas isopentane, toluene, hexane, heptane were dominant in outdoors. The indoor/ outdoor ratio of average sum of VOCs were found to be more than one in most of the schools indicating that there might be additional indoor sources along with the outdoor air in those schools. However, further expansion of the study in relation to source apportionment, correlating with traffic and meteorological data is in progress.