229 resultados para nitrogen source


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Source Monitoring Framework is a promising model of constructive memory, yet fails because it is connectionist and does not allow content tagging. The Dual-Process Signal Detection Model is an improvement because it reduces mnemic qualia to a single memory signal (or degree of belief), but still commits itself to non-discrete representation. By supposing that ‘tagging’ means the assignment of propositional attitudes to aggregates of anemic characteristics informed inductively, then a discrete model becomes plausible. A Bayesian model of source monitoring accounts for the continuous variation of inputs and assignment of prior probabilities to memory content. A modified version of the High-Threshold Dual-Process model is recommended to further source monitoring research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the 12th June 2014, Elon Musk, the chief executive officer of the electric car manufacturer, Tesla Motors, announced in a blog that ‘all our patents belong to you.’ He explained that the company would adopt an open source philosophy in respect of its intellectual property in order to encourage the development of the industry of electric cars, and address the carbon crisis. Elon Musk made the dramatic, landmark announcement: Yesterday, there was a wall of Tesla patents in the lobby of our Palo Alto headquarters. That is no longer the case. They have been removed, in the spirit of the open source movement, for the advancement of electric vehicle technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans dominate many important Earth system processes including the nitrogen (N) cycle. Atmospheric N deposition affects fundamental processes such as carbon cycling, climate regulation, and biodiversity, and could result in changes to fundamental Earth system processes such as primary production. Both modelling and experimentation have suggested a role for anthropogenically altered N deposition in increasing productivity, nevertheless, current understanding of the relative strength of N deposition with respect to other controls on production such as edaphic conditions and climate is limited. Here we use an international multiscale data set to show that atmospheric N deposition is positively correlated to aboveground net primary production (ANPP) observed at the 1-m2 level across a wide range of herbaceous ecosystems. N deposition was a better predictor than climatic drivers and local soil conditions, explaining 16% of observed variation in ANPP globally with an increase of 1 kg N·ha-1·yr-1 increasing ANPP by 3%. Soil pH explained 8% of observed variation in ANPP while climatic drivers showed no significant relationship. Our results illustrate that the incorporation of global N deposition patterns in Earth system models are likely to substantially improve estimates of primary production in herbaceous systems. In herbaceous systems across the world, humans appear to be partially driving local ANPP through impacts on the N cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequency Domain Spectroscopy (FDS) is one of the major techniques used for determining the condition of the cellulose based paper and pressboard components in large oil/paper insulated power transformers. This technique typically makes use of a sinusoidal voltage source swept from 0.1 mHz to 1 kHz. The excitation test voltage source used must meet certain characteristics, such as high output voltage, high fidelity, low noise and low harmonic content. The amplifier used; in the test voltage source; must be able to drive highly capacitive loads. This paper proposes that a switch-mode assisted linear amplifier (SMALA) can be used in the test voltage source to meet these criteria. A three level SMALA prototype amplifier was built to experimentally demonstrate the effectiveness of this proposal. The developed SMALA prototype shows no discernable harmonic distortion in the output voltage waveform, or the need for output filters, and is therefore seen as a preferable option to pulse width modulated digital amplifiers. The lack of harmonic distortion and high frequency switching noise in the output voltage of this SMALA prototype demonstrates its feasibility for applications in FDS, particularly on highly capacitive test objects such as transformer insulation systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensors to detect toxic and harmful gases are usually based on metal oxides that are operated at elevated temperature. However, enabling gas detection at room temperature (RT) is a significant ongoing challenge. Here, we address this issue by demonstrating that microrods of semiconducting CuTCNQ (TCNQ=7,7,8,8-tetracyanoquinodimethane) with nanostructured features can be employed as conductometric gas sensors operating at 50°C for detection of oxidizing and reducing gases such as NO2 and NH3. The sensor is evaluated at RT and up to 200°C. It was found that CuTCNQ is transformed into a N-doped CuO material with p-type conductivity when annealed at the maximum temperature. This is the first time that such a transformation, from a semiconducting charge transfer material into a N-doped metal oxide is detected. It is shown here that both the surface chemistry and the type of majority charge carrier within the sensing layer is critically important for the type of response towards oxidizing and reducing gases. A detailed physical description of NO2 and NH3 sensing mechanism at CuTCNQ and N-doped CuO is provided to explain the difference in the response. For the N-doped CuO sensor, a detection limit of 1 ppm for NO2 and 10 ppm for NH3 are achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural gas (the main component is methane) has been widely used as a fuel and raw material in industry. Removal of nitrogen (N2) from methane (CH4) can reduce the cost of natural gas transport and improve its efficiency. However, their extremely similar size increases the difficulty of separating N2 from CH4. In this study, we have performed a comprehensive investigation of N2 and CH4 adsorption on different charge states of boron nitride (BN) nanocage fullerene, B36N36, by using a density functional theory approach. The calculational results indicate that B36N36 in the negatively charged state has high selectivity in separating N2 from CH4. Moreover, once the extra electron is removed from the BN nanocage, the N2 will be released from the material. This study demonstrates that the B36N36 fullerene can be used as a highly selective and reusable material for the separation of N2 from CH4. The study also provides a clue to experimental design and application of BN nanomaterials for natural gas purification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene films were produced by chemical vapor deposition (CVD) of pyridine on copper substrates. Pyridine-CVD is expected to lead to doped graphene by the insertion of nitrogen atoms in the growing sp2 carbon lattice, possibly improving the properties of graphene as a transparent conductive film. We here report on the influence that the CVD parameters (i.e., temperature and gas flow) have on the morphology, transmittance, and electrical conductivity of the graphene films grown with pyridine. A temperature range between 930 and 1070 °C was explored and the results were compared to those of pristine graphene grown by ethanol-CVD under the same process conditions. The films were characterized by atomic force microscopy, Raman and X-ray photoemission spectroscopy. The optical transmittance and electrical conductivity of the films were measured to evaluate their performance as transparent conductive electrodes. Graphene films grown by pyridine reached an electrical conductivity of 14.3 × 105 S/m. Such a high conductivity seems to be associated with the electronic doping induced by substitutional nitrogen atoms. In particular, at 930 °C the nitrogen/carbon ratio of pyridine-grown graphene reaches 3%, and its electrical conductivity is 40% higher than that of pristine graphene grown from ethanol-CVD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Past research has suggested that social networking sites are the most common source for social engineering-based attacks. Persuasion research shows that people are more likely to obey and accept a message when the source’s presentation appears to be credible. However, many factors can impact the perceived credibility of a source, depending on its type and the characteristics of the environment. Our previous research showed that there are four dimensions of source credibility in terms of social engineering on Facebook: perceived sincerity, perceived competence, perceived attraction, and perceived worthiness. Because the dimensionalities of source credibility as well as their measurement scales can fluctuate from one type of source to another and from one type of context to another, our aim in this study includes validating the existence of those four dimensions toward the credibility of social engineering attackers on Facebook and developing a valid measurement scale for every dimension of them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airborne organic pollutants have significant impacts on health; however their sources, atmospheric characteristics and resulting human exposures are poorly understood. This research characterized chemical composition of atmospheric volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyls in representative number of primary schools in Brisbane Metropolitan Area, quantified their concentrations, assessed their toxicity and apportioned them to their sources. The findings expand scientific knowledge of these pollutants, and will contribute towards science based management of risks associated with pollution emissions and air quality in schools and other urban and indoor environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycyclic Aromatic Hydrocarbons (PAHs) represent a major class of toxic pollutants because of their carcinogenic and mutagenic characteristics. People living in urban areas are regularly exposed to PAHs because of abundance of their emission sources. Within this context, this study aimed to: (i) identify and quantify the levels of ambient PAHs in an urban environment; (ii) evaluate their toxicity; and (iii) identify their sources as well as the contribution of specific sources to measured concentrations. Sixteen PAHs were identified and quantified in air samples collected from Brisbane. Principal Component Analysis – Absolute Principal Component Scores (PCA- APCS) was used in order to conduct source apportionment of the measured PAHs. Vehicular emissions, natural gas combustion, petrol emissions and evaporative/unburned fuel were the sources identified; contributing 56%, 21%, 15% and 8% of the total PAHs emissions, respectively, all of which need to be considered for any pollution control measures implemented in urban areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic and optical properties of anatase titanium dioxide (TiO2), co-doped by nitrogen (N) and lithium (Li), have been investigated by density functional theory plus Hubbard correction term U, namely DFT+U. It is found that Li-dopants can effectively balance the net charges brought by N-dopants and shift the local state to the top of valence band. Depending on the distribution of dopants, the adsorption edges of TiO2 may be red- or blue-shifted, being consistent with recent experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effect of maize residues and rice husk biochar on biomass production, fertiliser nitrogen recovery (FNR) and nitrous oxide (N2O) emissions for three different subtropical cropping soils. Maize residues at two rates (0 and 10 t ha−1) combined with three rates (0, 15 and 30 t ha-1) of rice husk biochar were added to three soil types in a pot trial with maize plants. Soil N2O emissions were monitored with static chambers for 91 days. Isotopic 15N-labelled urea was applied to the treatments without added crop residues to measure the FNR. Crop residue incorporation significantly reduced N uptake in all treatments but did not affect overall FNR. Rice husk biochar amendment had no effect on plant growth and N uptake but significantly reduced N2O and carbon dioxide (CO2) emissions in two of the three soils. The incorporation of crop residues had a contrasting effect on soil N2O emissions depending on the mineral N status of the soil. The study shows that effects of crop residues depend on soil properties at the time of application. Adding crop residues with a high C/N ratio to soil can immobilise N in the soil profile and hence reduce N uptake and/or total biomass production. Crop residue incorporation can either stimulate or reduce N2O emissions depending on the mineral N content of the soil. Crop residues pyrolysed to biochar can potentially stabilise native soil C (negative priming) and reduce N2O emissions from cropping soils thus providing climate change mitigation potential beyond the biochar C storage in soils. Incorporation of crop residues as an approach to recycle organic materials and reduce synthetic N fertiliser use in agricultural production requires a thorough evaluation, both in terms of biomass production and greenhouse gas emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High concentrations of nitrate-nitrogen degrade the quality of aquatic environments. The primary mechanism by which nitrate-nitrogen is removed (denitrification) requires anoxic conditions and electron donors. While removal of total and ammonium-nitrogen is often high in stormwater biofilters, poor removal or even the release of nitrate-nitrogen in the outflow has often been observed. Five Perspex biofilter columns (94 mm internal diameter) were fabricated with a filter layer that contained 8% organic material. Columns were operated at 875  mm/h 875  mm/h and fed with simulated stormwater with different antecedent dry days (ADDs) and concentrations of nitrate-nitrogen. Samples were collected from the outflow at different time intervals between 2 and 150 min and were tested for nitrate-nitrogen. The removal of nitrate-nitrogen varied during an event from a high removal percentage (60–90%) in the initial outflow that gradually decreased in the first 30 min and settled at 0–15% removal thereafter. This remained consistent during all simulated events independent of the number of ADDs or inflow concentrations. ADDs and previous event feed concentrations affected the outflow nitrate-nitrogen concentration in the first 30 min of the current event. Therefore, from this study it is concluded that denitrification within stormwater biofilters occurs mainly during drying periods rather than wetting periods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over recent decades, efforts have been made to reduce human exposure to atmospheric pollutants including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) through emission control and abatement. Along with the potential changes in their concentrations resulting from these efforts, profiles of emission sources may have also changed over such extended timeframes. However relevant data are quite limited in the Southern Hemisphere. We revisited two sampling sites in an Australian city, where the concentration data in 1994/5 for atmospheric PAHs and PCBs were available. Monthly air samples from July 2013 to June 2014 at the two sites were collected and analysed for these compounds, using similar protocols to the original study. A prominent seasonal pattern was observed for PAHs with elevated concentrations in cooler months whereas PCB levels showed little seasonal variation. Compared to two decades ago, atmospheric concentrations of ∑13 PAHs (gaseous + particle-associated) in this city have decreased by approximately one order of magnitude and the apparent halving time ( t 1 / 2 ) was estimated as 6.2 ± 0.56 years. ∑6 iPCBs concentrations (median value; gaseous + particle-associated) have decreased by 80% with an estimated t 1 / 2 of 11 ± 2.9 years. These trends and values are similar to those reported for comparable sites in the Northern Hemisphere. To characterise emission source profiles, samples were also collected from a bushfire event and within a vehicular tunnel. Emissions from bushfires are suggested to be an important contributor to the current atmospheric concentrations of PAHs in this city. This contribution is more important in cooler months, i.e. June, July and August, and its importance may have increased over the last two decades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of UAVs for remote sensing tasks; e.g. agriculture, search and rescue is increasing. The ability for UAVs to autonomously find a target and perform on-board decision making, such as descending to a new altitude or landing next to a target is a desired capability. Computer-vision functionality allows the Unmanned Aerial Vehicle (UAV) to follow a designated flight plan, detect an object of interest, and change its planned path. In this paper we describe a low cost and an open source system where all image processing is achieved on-board the UAV using a Raspberry Pi 2 microprocessor interfaced with a camera. The Raspberry Pi and the autopilot are physically connected through serial and communicate via MAVProxy. The Raspberry Pi continuously monitors the flight path in real time through USB camera module. The algorithm checks whether the target is captured or not. If the target is detected, the position of the object in frame is represented in Cartesian coordinates and converted into estimate GPS coordinates. In parallel, the autopilot receives the target location approximate GPS and makes a decision to guide the UAV to a new location. This system also has potential uses in the field of Precision Agriculture, plant pest detection and disease outbreaks which cause detrimental financial damage to crop yields if not detected early on. Results show the algorithm is accurate to detect 99% of object of interest and the UAV is capable of navigation and doing on-board decision making.