237 resultados para motion-based driving simulator
Resumo:
Over the past several decades there has been a sharp increase in the number of studies focused on the relationship between vision and driving. The intensified attention to this topic has most likely been stimulated by the lack of an evidence basis for determining vision standards for driving licensure and a poor understanding about how vision impairment impacts driver safety and performance. Clinicians depend on the literature on vision and driving to advise visually impaired patients appropriately about driving fitness. Policy makers also depend on the scientific literature in order to develop guidelines that are evidence-based and are thus fair to persons who are visually impaired. Thus it is important for clinicians and policy makers alike to understand how various study designs and measurement methods should be interpreted so that the conclusions and recommendations they make are not overly broad, too narrowly constrained, or even misguided. We offer a methodological framework to guide interpretations of studies on vision and driving that can also serve as a heuristic for researchers in the area. Here, we discuss research designs and general measurement methods for the study of vision as they relate to driver safety, driver performance, and driver-centered (self-reported) outcomes.
Resumo:
This paper details the design and performance assessment of a unique collision avoidance decision and control strategy for autonomous vision-based See and Avoid systems. The general approach revolves around re-positioning a collision object in the image using image-based visual servoing, without estimating range or time to collision. The decision strategy thus involves determining where to move the collision object, to induce a safe avoidance manuever, and when to cease the avoidance behaviour. These tasks are accomplished by exploiting human navigation models, spiral motion properties, expected image feature uncertainty and the rules of the air. The result is a simple threshold based system that can be tuned and statistically evaluated by extending performance assessment techniques derived for alerting systems. Our results demonstrate how autonomous vision-only See and Avoid systems may be designed under realistic problem constraints, and then evaluated in a manner consistent to aviation expectations.
Resumo:
This program is a research based, guided intervention program, designed for first time drink driving offenders which provides them with information and strategies to avoid drink driving in the future. It is an innovative program with the ability to tailor specific information to different individuals based on their level of risk of reoffending and help them develop their own plan to prevent them from drink driving. It aims to teach offenders the skills to implement their own plan when they determine they are at risk of future drink driving. The program provides information about: What a standard drink is and how blood alcohol content (BAC) is determined; How alcohol affects the body, reaction time, and decision making; The consequences of drink driving and what happens after a second offence; How to deal with risky drink driving situations in the future; How to build a personalised plan to avoid drink driving in the future, and; Levels of alcohol consumption and its impact on daily life. It also includes access to a mobile friendly web app that can be used anytime after completing the program. This is tool that will aid offenders in tracking their drinks and build on plans to prevent future drink driving.
Resumo:
Genetic and environmental factors influence brain structure and function profoundly. The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8 ± 1.8 SD years). All 92 twins' 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject's anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions that have a more protracted maturational time-course.
Resumo:
Venous leg ulcers are a significant cause of chronic ill-health, whilst patients often experience reduced mobility and poor quality of life. This research investigated exercise as a tool for improving outcomes for adults with venous leg ulcers. The results showed that patients who adhere to an exercise program as an adjunct treatment to standard care are more likely to heal than those who do not adhere to an exercise program. This research has the potential to improve the health of venous leg ulcer patients and decrease health care costs.
Resumo:
Deterrence-based initiatives form a cornerstone of many road safety countermeasures. This approach is informed by Classical Deterrence Theory, which proposes that individuals will be deterred from committing offences if they fear the perceived consequences of the act, especially the perceived certainty, severity and swiftness of sanctions. While deterrence-based countermeasures have proven effective in reducing a range of illegal driving behaviours known to cause crashes such as speeding and drink driving, the exact level of exposure, and how the process works, remains unknown. As a result the current study involved a systematic review of the literature to identify theoretical advancements within deterrence theory that has informed evidence-based practice. Studies that reported on perceptual deterrence between 1950 and June 2015 were searched in electronic databases including PsychINFO and ScienceDirect, both within road safety and non-road safety fields. This review indicated that scientific efforts to understand deterrence processes for road safety were most intense during the 1970s and 1980s. This era produced competing theories that postulated both legal and non-legal factors can influence offending behaviours. Since this time, little theoretical progression has been made in the road safety arena, apart from Stafford and Warr's (1993) reconceptualisation of deterrence that illuminated the important issue of punishment avoidance. In contrast, the broader field of criminology has continued to advance theoretical knowledge by investigating a range of individual difference-based factors proposed to influence deterrent processes, including: moral inhibition, social bonding, self-control, tendencies to discount the future, etc. However, this scientific knowledge has not been directed towards identifying how to best utilise deterrence mechanisms to improve road safety. This paper will highlight the implications of this lack of progression and provide direction for future research.
Resumo:
Driving while sleepy is regarded as a substantial crash risk factor. Reducing the risk of sleep-related crashes predominately rests with the driver’s awareness of experiencing signs that are common when sleepy; such as yawning, frequent eye blinks, and difficulty keeping eyes open. However the relationship between the signs of sleepiness and risky sleepy driving behaviours is largely unknown. The current study sought to examine the relationships between drivers’ experiences of the signs of sleepiness, risky sleepy driving behaviours, and the associations with demographic, work and sleep-related factors. In total 1,608 participants completed a questionnaire administered via a telephone interview that assessed their experiences and behaviours of driving while sleepy. The results revealed a number of demographic, work and sleep-related factors were associated with experiencing signs of sleepiness when driving. Signs of sleepiness were also found to mediate the relationship between continuing to drive while sleepy and having a sleep-related close call event. A subgroup analysis based on age (under 30 and 30 years or older) found younger drivers were more likely to continue to drive when sleepy despite experiencing more signs of sleepiness. The results suggest participants had considerable experience with the signs of sleepiness and driving while sleepy. Actions to be taken from this research include informing the content of driver education campaigns regarding the importance of the signs of sleepiness. Working together to educate all drivers about the dangerousness of driving when experiencing signs of sleepiness is an important road safety outcome.
Resumo:
Purpose In response to the threat that drink drivers pose to themselves and others, drink driving programs form an important part of a suite of countermeasures used in Australia and internationally. Unlike New Zealand/Aotearoa, United States and Canada that have programs catering for their First Peoples, all Australian programs are designed for the general driver population. The aim of this study was to identify the factors that contribute to Indigenous drink driving in order to inform appropriate recommendations related to developing a community-based program for Indigenous communities. Broader drivers licensing policy recommendations are also discussed. Methods A sample of 73 Indigenous people from Queensland and in New South Wales with one or more drink driving convictions completed a semi-structured interview in respect of the to their drink driving behaviour. Participants were asked to disclose information regarding their drink driving history, and alcohol and drug use. If participants self-reported no longer drink driving, they were probed about what factors had assisted them to avoid further offending. Results Key themes which emerged to maintain drink driving include motivations to drink and drive, and belief in the ability to manage the associated risks. Factors that appeared to support others from avoiding further offending include re-connecting with culture and family support. Conclusions and Implications A range of recommendations regarding delivery and content of a program for regional and remote communities as well as other policy implications are discussed.
Resumo:
Drink driving remains a substantial public health issue warranting investigation. First offender drink drivers are seen to be less risky than repeat offenders, though the majority of first offenders report drink driving prior to detection, and many continue to drink drive following conviction. Few first offenders are offered treatment programs, and as such there is a need to address drink driving behaviour at this stage. A comprehensive approach including first offender treatment is needed to address the problem. Online interventions have demonstrated effectiveness in reducing risky behaviours such as harmful substance use. Such interventions allow for personalised tailored content to be delivered to individuals targeting specific mechanisms of behavioural change. This method also allows for targeting screening to ensure relevance of content on an individual level. However, there have been no research based online programs to date aimed at reducing repeat drink driving by first offenders. The Steering Clear First Offender Drink Driving Program is a self-guided, research based online program aimed at reducing recidivism by first time drink driving offenders. It includes a specialised web app to track drinks and build plans to prevent future drink driving. This allows for elongation of learning and encouragement of sustained behavioural change using self-monitoring after initial program completion. An outline of the program is discussed and the qualitative experience of the program on a sample of first offenders recruited at the time of court appearance is described.
Resumo:
A common theme in many accounts of road safety and road use in low and middle income countries is a widespread lack of compliance with traffic laws and related legislation. A key element of the success of road crash prevention strategies in high income countries has been the achievement of safer road user behaviour through compliance with traffic laws. Deterrence-based approaches such as speed cameras and random breath testing, which rely on drivers making an assessment that they are likely to be caught if they offend, have been very effective in this regard. However, the long term success of (for example) drink driving legislation has been supported by drivers adopting a moral approach to compliance rather than relying solely on the intensity of police operations. For low and middle income countries such morally based compliance is important, since levels of police resourcing are typically much lower than in Western countries. In the absence of morally based compliance, it is arguable that the patterns of behaviours observed in low and middle income countries can be described as "pragmatic driving": compliance only when there is a high chance of being detected and fined, or where a crash might occur. The potential characteristics of pragmatic driving in the macro-, meso- and micro-context of driving and the enforcement approach that could address it are outlined, with reference to the limited existing information available.
Resumo:
This paper presents a motion control system for guidance of an underactuated Unmanned Underwater Vehicle (UUV) on a helical trajectory. The control strategy is developed using Port-Hamiltonian theory and interconnection and damping assignment passivity-based control. Using energy routing, the trajectory of a virtual fully actuated plant is guided onto a vector field. A tracking controller is then used that commands the underactuated plant to follow the velocity of the virtual plant. An integral control is inserted between the two control layers, which adds robustness and disturbance rejection to the design.
Resumo:
In this report an artificial neural network (ANN) based automated emergency landing site selection system for unmanned aerial vehicle (UAV) and general aviation (GA) is described. The system aims increase safety of UAV operation by emulating pilot decision making in emergency landing scenarios using an ANN to select a safe landing site from available candidates. The strength of an ANN to model complex input relationships makes it a perfect system to handle the multicriteria decision making (MCDM) process of emergency landing site selection. The ANN operates by identifying the more favorable of two landing sites when provided with an input vector derived from both landing site's parameters, the aircraft's current state and wind measurements. The system consists of a feed forward ANN, a pre-processor class which produces ANN input vectors and a class in charge of creating a ranking of landing site candidates using the ANN. The system was successfully implemented in C++ using the FANN C++ library and ROS. Results obtained from ANN training and simulations using randomly generated landing sites by a site detection simulator data verify the feasibility of an ANN based automated emergency landing site selection system.
Resumo:
Background Different from other indicators of cardiac function, such as ejection fraction and transmitral early diastolic velocity, myocardial strain is promising to capture subtle alterations that result from early diseases of the myocardium. In order to extract the left ventricle (LV) myocardial strain and strain rate from cardiac cine-MRI, a modified hierarchical transformation model was proposed. Methods A hierarchical transformation model including the global and local LV deformations was employed to analyze the strain and strain rate of the left ventricle by cine-MRI image registration. The endocardial and epicardial contour information was introduced to enhance the registration accuracy by combining the original hierarchical algorithm with an Iterative Closest Points using Invariant Features algorithm. The hierarchical model was validated by a normal volunteer first and then applied to two clinical cases (i.e., the normal volunteer and a diabetic patient) to evaluate their respective function. Results Based on the two clinical cases, by comparing the displacement fields of two selected landmarks in the normal volunteer, the proposed method showed a better performance than the original or unmodified model. Meanwhile, the comparison of the radial strain between the volunteer and patient demonstrated their apparent functional difference. Conclusions The present method could be used to estimate the LV myocardial strain and strain rate during a cardiac cycle and thus to quantify the analysis of the LV motion function.
Resumo:
The mechanical properties of arterial walls have long been recognized to play an essential role in the development and progression of cardiovascular disease (CVD). Early detection of variations in the elastic modulus of arteries would help in monitoring patients at high cardiovascular risk stratifying them according to risk. An in vivo, non-invasive, high resolution MR-phase-contrast based method for the estimation of the time-dependent elastic modulus of healthy arteries was developed, validated in vitro by means of a thin walled silicon rubber tube integrated into an existing MR-compatible flow simulator and used on healthy volunteers. A comparison of the elastic modulus of the silicon tube measured from the MRI-based technique with direct measurements confirmed the method's capability. The repeatability of the method was assessed. Viscoelastic and inertial effects characterizing the dynamic response of arteries in vivo emerged from the comparison of the pressure waveform and the area variation curve over a period. For all the volunteers who took part in the study the elastic modulus was found to be in the range 50-250 kPa, to increase during the rising part of the cycle, and to decrease with decreasing pressure during the downstroke of systole and subsequent diastole.
Resumo:
First year medical laboratory science students (up to 120) undertake a group e-poster project, based in a blended learning model Google Drive, encompassing Google’s cloud computing software, provides a readily accessible, transparent online space for students to collaborate with each other and realise tangible outcomes from their learning The Cube provides an inspiring digital learning display space for student ‘conference style’ presentations