723 resultados para injury data


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: All currently considered parametric models used for decomposing videokeratoscopy height data are viewercentered and hence describe what the operator sees rather than what the surface is. The purpose of this study was to ascertain the applicability of an object-centered representation to modeling of corneal surfaces. Methods: A three-dimensional surface decomposition into a series of spherical harmonics is considered and compared with the traditional Zernike polynomial expansion for a range of videokeratoscopic height data. Results: Spherical harmonic decomposition led to significantly better fits to corneal surfaces (in terms of the root mean square error values) than the corresponding Zernike polynomial expansions with the same number of coefficients, for all considered corneal surfaces, corneal diameters, and model orders. Conclusions: Spherical harmonic decomposition is a viable alternative to Zernike polynomial decomposition. It achieves better fits to videokeratoscopic height data and has the advantage of an object-centered representation that could be particularly suited to the analysis of multiple corneal measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low back pain is an increasing problem in industrialised countries and although it is a major socio-economic problem in terms of medical costs and lost productivity, relatively little is known about the processes underlying the development of the condition. This is in part due to the complex interactions between bone, muscle, nerves and other soft tissues of the spine, and the fact that direct observation and/or measurement of the human spine is not possible using non-invasive techniques. Biomechanical models have been used extensively to estimate the forces and moments experienced by the spine. These models provide a means of estimating the internal parameters which can not be measured directly. However, application of most of the models currently available is restricted to tasks resembling those for which the model was designed due to the simplified representation of the anatomy. The aim of this research was to develop a biomechanical model to investigate the changes in forces and moments which are induced by muscle injury. In order to accurately simulate muscle injuries a detailed quasi-static three dimensional model representing the anatomy of the lumbar spine was developed. This model includes the nine major force generating muscles of the region (erector spinae, comprising the longissimus thoracis and iliocostalis lumborum; multifidus; quadratus lumborum; latissimus dorsi; transverse abdominis; internal oblique and external oblique), as well as the thoracolumbar fascia through which the transverse abdominis and parts of the internal oblique and latissimus dorsi muscles attach to the spine. The muscles included in the model have been represented using 170 muscle fascicles each having their own force generating characteristics and lines of action. Particular attention has been paid to ensuring the muscle lines of action are anatomically realistic, particularly for muscles which have broad attachments (e.g. internal and external obliques), muscles which attach to the spine via the thoracolumbar fascia (e.g. transverse abdominis), and muscles whose paths are altered by bony constraints such as the rib cage (e.g. iliocostalis lumborum pars thoracis and parts of the longissimus thoracis pars thoracis). In this endeavour, a separate sub-model which accounts for the shape of the torso by modelling it as a series of ellipses has been developed to model the lines of action of the oblique muscles. Likewise, a separate sub-model of the thoracolumbar fascia has also been developed which accounts for the middle and posterior layers of the fascia, and ensures that the line of action of the posterior layer is related to the size and shape of the erector spinae muscle. Published muscle activation data are used to enable the model to predict the maximum forces and moments that may be generated by the muscles. These predictions are validated against published experimental studies reporting maximum isometric moments for a variety of exertions. The model performs well for fiexion, extension and lateral bend exertions, but underpredicts the axial twist moments that may be developed. This discrepancy is most likely the result of differences between the experimental methodology and the modelled task. The application of the model is illustrated using examples of muscle injuries created by surgical procedures. The three examples used represent a posterior surgical approach to the spine, an anterior approach to the spine and uni-lateral total hip replacement surgery. Although the three examples simulate different muscle injuries, all demonstrate the production of significant asymmetrical moments and/or reduced joint compression following surgical intervention. This result has implications for patient rehabilitation and the potential for further injury to the spine. The development and application of the model has highlighted a number of areas where current knowledge is deficient. These include muscle activation levels for tasks in postures other than upright standing, changes in spinal kinematics following surgical procedures such as spinal fusion or fixation, and a general lack of understanding of how the body adjusts to muscle injuries with respect to muscle activation patterns and levels, rate of recovery from temporary injuries and compensatory actions by other muscles. Thus the comprehensive and innovative anatomical model which has been developed not only provides a tool to predict the forces and moments experienced by the intervertebral joints of the spine, but also highlights areas where further clinical research is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Problem-based learning (PBL) is a pedagogical methodology that presents the learner with a problem to be solved to stimulate and situate learning. This paper presents key characteristics of a problem-based learning environment that determines its suitability as a data source for workrelated research studies. To date, little has been written about the availability and validity of PBL environments as a data source and its suitability for work-related research. We describe problembased learning and use a research project case study to illustrate the challenges associated with industry work samples. We then describe the PBL course used in our research case study and use this example to illustrate the key attributes of problem-based learning environments and show how the chosen PBL environment met the work-related research requirements of the research case study. We propose that the more realistic the PBL work context and work group composition, the better the PBL environment as a data source for a work-related research. The work context is more realistic when relevant and complex project-based problems are tackled in industry-like work conditions over longer time frames. Work group composition is more realistic when participants with industry-level education and experience enact specialized roles in different disciplines within a professional community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: This paper sought to identify the behaviour change targets for an injury prevention program; Skills for Preventing Injury in Youth, SPIY. The aim was to explore how such behaviours could subsequently be implemented and evaluated in the program. Methods and Design: The quantitative procedure involved a survey with 267 Year 8 and 9 students (mean age 13.23 years) regarding their engagement in risk-taking behaviours that may lead to injury. The qualitative study involved 30 students aged 14 to 17 years reporting their experiences of injury and risk-taking. Results: Injury risk behaviours co-occurred among three-quarters of those who reported engaging in any alcohol use or transport or violence related injury risk behaviour. Students described in detail some of these experiences. Conclusions: The selection process of identifying target behaviours for change for an injury prevention program is described. Adolescents’ description of such risk behaviours can inform the process of operationalising and contextualising program content and deciding on evaluation methodology. The design of an effective injury prevention program involves considerable preparatory work and this paper was able to describe the process of identifying the behavioural targets for change that can be operationalised and evaluated in the injury prevention program, SPIY.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the development of a school-based intervention to reduce risk-taking and associated injuries. There is limited but important evidence that intervention design should ensure participation does not lead to an increase in target risk behaviors with some studies in alcohol and drug prevention finding unexpected negative effects. The short-term evaluation of Skills for Preventing Injury in Youth (SPIY) examined change in interpersonal violence, alcohol and transport-related risks. Intervention (n = 360) and comparison (n = 180) students were surveyed pre/post-intervention. A qualitative analysis based on focus groups (70 students) explored experiences of change. Findings indicate significant positive changes reinforced by students’ reports. A decrease in reported risk-taking for the intervention group and an increase in the comparison group were observed. These findings endorse SPIY as a useful curriculum approach to reducing injuries and lend support to the future conduct of a long-term outcome evaluation.