464 resultados para green information systems
Resumo:
A distinctive feature of Chinese test is that a Chinese document is a sequence of Chinese with no space or boundary between Chinese words. This feature makes Chinese information retrieval more difficult since a retrieved document which contains the query term as a sequence of Chinese characters may not be really relevant to the query since the query term (as a sequence Chinese characters) may not be a valid Chinese word in that documents. On the other hand, a document that is actually relevant may not be retrieved because it does not contain the query sequence but contains other relevant words. In this research, we propose a hybrid Chinese information retrieval model by incorporating word-based techniques with the traditional character-based techniques. The aim of this approach is to investigate the influence of Chinese segmentation on the performance of Chinese information retrieval. Two ranking methods are proposed to rank retrieved documents based on the relevancy to the query calculated by combining character-based ranking and word-based ranking. Our experimental results show that Chinese segmentation can improve the performance of Chinese information retrieval, but the improvement is not significant if it incorporates only Chinese segmentation with the traditional character-based approach.
Resumo:
Recommender systems are one of the recent inventions to deal with ever growing information overload. Collaborative filtering seems to be the most popular technique in recommender systems. With sufficient background information of item ratings, its performance is promising enough. But research shows that it performs very poor in a cold start situation where previous rating data is sparse. As an alternative, trust can be used for neighbor formation to generate automated recommendation. User assigned explicit trust rating such as how much they trust each other is used for this purpose. However, reliable explicit trust data is not always available. In this paper we propose a new method of developing trust networks based on user’s interest similarity in the absence of explicit trust data. To identify the interest similarity, we have used user’s personalized tagging information. This trust network can be used to find the neighbors to make automated recommendations. Our experiment result shows that the proposed trust based method outperforms the traditional collaborative filtering approach which uses users rating data. Its performance improves even further when we utilize trust propagation techniques to broaden the range of neighborhood.
Resumo:
This study investigates a way to systematically integrate information literacy (IL) into an undergraduate academic programme and develops a model for integrating information literacy across higher education curricula. Curricular integration of information literacy in this study means weaving information literacy into an academic curriculum. In the associated literature, it is also referred to as the information literacy embedding approach or the intra-curricular approach. The key findings identified from this study are presented in 4 categories: the characteristics of IL integration; the key stakeholders in IL integration; IL curricular design strategies; and the process of IL curricular integration. Three key characteristics of the curricular integration of IL are identified: collaboration and negotiation, contextualisation and ongoing interaction with information. The key stakeholders in the curricular integration of IL are recognised as the librarians, the course coordinators and lecturers, the heads of faculties or departments, and the students. Some strategies for IL curricular design include: the use of IL policies and standards in IL curricular design; the combination of face to face and online teaching as an emerging trend; the use of IL assessment tools which play an important role in IL integration. IL can be integrated into the intended curriculum (what an institution expects its students to learn), the offered curriculum (what the teachers teach) and the received curriculum (what students actually learn). IL integration is a process of negotiation, collaboration and the implementation of the intended curriculum. IL can be integrated at different levels of curricula such as: institutional, faculty, departmental, course and class curriculum levels. Based on these key findings, an IL curricular integration model is developed. The model integrates curriculum, pedagogy and learning theories, IL theories, IL guidelines and the collaboration of multiple partners. The model provides a practical approach to integrating IL into multiple courses across an academic degree. The development of the model was based on the IL integration experiences of various disciplines in three universities and the implementation experience of an engineering programme at another university; thus it may be of interest to other disciplines. The model has the potential to enhance IL teaching and learning, curricular development and to implement graduate attributes in higher education. Sociocultural theories are applied to the research process and IL curricular design of this study. Sociocultural theories describe learning as being embedded within social events and occurring as learners interact with other people, objects, and events in a collaborative environment. Sociocultural theories are applied to explore how academic staff and librarians experience the curricular integration of IL; they also support collaboration in the curricular integration of IL and the development of an IL integration model. This study consists of two phases. Phase I (2007) was the interview phase where both academic staff and librarians at three IL active universities were interviewed. During this phase, attention was paid specifically to the practical process of curricular integration of IL and IL activity design. Phase II, the development phase (2007-2008), was conducted at a fourth university. This phase explores the systematic integration of IL into an engineering degree from Year 1 to Year 4. Learning theories such as sociocultural theories, Bloom’s Taxonomy and IL theories are used in IL curricular development. Based on the findings from both phases, an IL integration model was developed. The findings and the model contribute to IL education, research and curricular development in higher education. The sociocultural approach adopted in this study also extends the application of sociocultural theories to the IL integration process and curricular design in higher education.
Resumo:
Information and communication technologies (ICTs) are essential components of the knowledge economy, and have an immense complementary role in innovation, education, knowledge creation, and relations with government, civil society, and business within city regions. The ability to create, distribute, and exploit knowledge has become a major source of competitive advantage, wealth creation, and improvements in the new regional policies. Growing impact of ICTs on the economy and society, rapid application of recent scientific advances in new products and processes, shifting to more knowledge-intensive industry and services, and rising skill requirements have become crucial concepts for urban and regional competitiveness. Therefore, harnessing ICTs for knowledge-based urban development (KBUD) has a significant impact on urban and regional growth (Yigitcanlar, 2005). In this sense, e-region is a novel concept utilizing ICTs for regional development. Since the Helsinki European Council announced Turkey as a candidate for European Union (EU) membership in 1999, the candidacy has accelerated the speed of regional policy enhancements and adoption of the European regional policy standards. These enhancements and adoption include the generation of a new regional spatial division, NUTS-II statistical regions; a new legislation on the establishment of regional development agencies (RDAs); and new orientations in the field of high education, science, and technology within the framework of the EU’s Lisbon Strategy and the Bologna Process. The European standards posed an ambitious new agenda in the development and application of contemporary regional policy in Turkey (Bilen, 2005). In this sense, novel regional policies in Turkey necessarily endeavor to include information society objectives through efficient use of new technologies such as ICTs. Such a development seeks to be based on tangible assets of the region (Friedmann, 2006) as well as the best practices deriving from grounding initiatives on urban and local levels. These assets provide the foundation of an e-region that harnesses regional development in an information society context. With successful implementations, the Marmara region’s local governments in Turkey are setting the benchmark for the country in the implementation of spatial information systems and e-governance, and moving toward an e-region. Therefore, this article aims to shed light on organizational and regional realities of recent practices of ICT applications and their supply instruments based on evidence from selected local government organizations in the Marmara region. This article also exemplifies challenges and opportunities of the region in moving toward an e-region and provides a concise review of different ICT applications and strategies in a broader urban and regional context. The article is organized in three parts. The following section scrutinizes the e-region framework and the role of ICTs in regional development. Then, Marmara’s opportunities and challenges in moving toward an e-region are discussed in the context of ICT applications and their supply instruments based on public-sector projects, policies, and initiatives. Subsequently, the last section discusses conclusions and prospective research.
Resumo:
The paper describes the processes and the outcomes of the ranking of LIS journal titles by Australia’s LIS researchers during 2007-8, firstly through the Australian federal government’s Research Quality Framework (RQF) process and then its replacement, the Excellence in Research for Australia (ERA) initiative. The requirement to rank the journals titles used came from discussions held at the RQF panel meeting held in February 2007 in Canberra, Australia. While it was recognised that the Web of Science (formerly ISI) journal impact approach of journal acceptance for measures of research quality and impact might not work for LIS, it was apparent that this model would be the default if no other ranking of journal titles became apparent. Although an increasing number of LIS and related discipline journals were appearing in the Web of Science listed rankings, the number was few and it was thus decided by the Australian LIS research community to undertake the ranking exercise.
Resumo:
Item folksonomy or tag information is a kind of typical and prevalent web 2.0 information. Item folksonmy contains rich opinion information of users on item classifications and descriptions. It can be used as another important information source to conduct opinion mining. On the other hand, each item is associated with taxonomy information that reflects the viewpoints of experts. In this paper, we propose to mine for users’ opinions on items based on item taxonomy developed by experts and folksonomy contributed by users. In addition, we explore how to make personalized item recommendations based on users’ opinions. The experiments conducted on real word datasets collected from Amazon.com and CiteULike demonstrated the effectiveness of the proposed approaches.
Resumo:
The Large scaled emerging user created information in web 2.0 such as tags, reviews, comments and blogs can be used to profile users’ interests and preferences to make personalized recommendations. To solve the scalability problem of the current user profiling and recommender systems, this paper proposes a parallel user profiling approach and a scalable recommender system. The current advanced cloud computing techniques including Hadoop, MapReduce and Cascading are employed to implement the proposed approaches. The experiments were conducted on Amazon EC2 Elastic MapReduce and S3 with a real world large scaled dataset from Del.icio.us website.
Resumo:
Social tags in web 2.0 are becoming another important information source to describe the content of items as well as to profile users’ topic preferences. However, as arbitrary words given by users, tags contains a lot of noise such as tag synonym and semantic ambiguity a large number personal tags that only used by one user, which brings challenges to effectively use tags to make item recommendations. To solve these problems, this paper proposes to use a set of related tags along with their weights to represent semantic meaning of each tag for each user individually. A hybrid recommendation generation approaches that based on the weighted tags are proposed. We have conducted experiments using the real world dataset obtained from Amazon.com. The experimental results show that the proposed approaches outperform the other state of the art approaches.
Resumo:
What informs members of the church community as they learn? Do the ways people engage with information differ according to the circumstances in which they learn? Informed learning, or the ways in which people use information in the learning experience and the degree to which they are aware of that, has become a focus of contemporary information literacy research. This essay explores the nature of informed learning in the context of the church as a learning community. It is anticipated that insights resulting from this exploration may help church organisations, church leaders and lay people to consider how information can be used to grow faith, develop relationships, manage the church and respond to religious knowledge, which support the pursuit of spiritual wellness and the cultivation of lifelong learning. Information professionals within the church community and the broader information profession are encouraged to foster their awareness of the impact that engagement with information has in the learning experience and in the prioritising of lifelong learning in community contexts.
Resumo:
The economic environment of today can be characterized as highly dynamic and competitive if not being in a constant flux. Globalization and the Information Technology (IT) revolution are perhaps the main contributing factors to this observation. While companies have to some extent adapted to the current business environment, new pressures such as the recent increase in environmental awareness and its likely effects on regulations are underway. Hence, in the light of market and competitive pressures, companies must constantly evaluate and if necessary update their strategies to sustain and increase the value they create for shareholders (Hunt and Morgan, 1995; Christopher and Towill, 2002). One way to create greater value is to become more efficient in producing and delivering goods and services to customers, which can lead to a strategy known as cost leadership (Porter, 1980). Even though Porter (1996) notes that in the long run cost leadership may not be a sufficient strategy for competitive advantage, operational efficiency is certainly necessary and should therefore be on the agenda of every company. ----- ----- ----- Better workflow management, technology, and resource utilization can lead to greater internal operational efficiency, which explains why, for example, many companies have recently adopted Enterprise Resource Planning (ERP) Systems: integrated softwares that streamline business processes. However, as today more and more companies are approaching internal operational excellence, the focus for finding inefficiencies and cost saving opportunities is moving beyond the boundaries of the firm. Today many firms in the supply chain are engaging in collaborative relationships with customers, suppliers, and third parties (services) in an attempt to cut down on costs related to for example, inventory, production, as well as to facilitate synergies. Thus, recent years have witnessed fluidity and blurring regarding organizational boundaries (Coad and Cullen, 2006). ----- ----- ----- The Information Technology (IT) revolution of the late 1990’s has played an important role in bringing organizations closer together. In their efforts to become more efficient, companies first integrated their information systems to speed up transactions such as ordering and billing. Later collaboration on a multidimensional scale including logistics, production, and Research & Development became evident as companies expected substantial benefits from collaboration. However, one could also argue that the recent popularity of the concepts falling under Supply Chain Management (SCM) such as Vendor Managed Inventory, Collaborative Planning, Replenishment, and Forecasting owe to the marketing efforts of software vendors and consultants who provide these solutions. Nevertheless, reports from professional organizations as well as academia indicate that the trend towards interorganizational collaboration is gaining wider ground. For example, the ARC Advisory Group, a research organization on supply chain solutions, estimated that the market for SCM, which includes various kinds of collaboration tools and related services, is going to grow at an annual rate of 7.4% during the years 2004-2008, reaching to $7.4 billion in 2008 (Engineeringtalk 2004).
Resumo:
Intelligent agents are an advanced technology utilized in Web Intelligence. When searching information from a distributed Web environment, information is retrieved by multi-agents on the client site and fused on the broker site. The current information fusion techniques rely on cooperation of agents to provide statistics. Such techniques are computationally expensive and unrealistic in the real world. In this paper, we introduce a model that uses a world ontology constructed from the Dewey Decimal Classification to acquire user profiles. By search using specific and exhaustive user profiles, information fusion techniques no longer rely on the statistics provided by agents. The model has been successfully evaluated using the large INEX data set simulating the distributed Web environment.
Resumo:
This paper presents a novel two-stage information filtering model which combines the merits of term-based and pattern- based approaches to effectively filter sheer volume of information. In particular, the first filtering stage is supported by a novel rough analysis model which efficiently removes a large number of irrelevant documents, thereby addressing the overload problem. The second filtering stage is empowered by a semantically rich pattern taxonomy mining model which effectively fetches incoming documents according to the specific information needs of a user, thereby addressing the mismatch problem. The experiments have been conducted to compare the proposed two-stage filtering (T-SM) model with other possible "term-based + pattern-based" or "term-based + term-based" IF models. The results based on the RCV1 corpus show that the T-SM model significantly outperforms other types of "two-stage" IF models.
Resumo:
Business Process Management (BPM) is a top priority in organisations and is rapidly proliferating as an emerging discipline in practice. However, the current studies show lack of appropriate BPM skilled professionals in the field and a dearth of opportunities to develop BPM expertise. This paper analyses the gap between available BPM-related education in Australia and required BPM capabilities. BPM courses offered by Australian universities and training institutions have been critically analysed and mapped against leading BPM capability frameworks to determine how well current BPM education and training offerings in Australia actually address the core capabilities required for BPM professionals. The outcomes reported here can be used by Australian universities and training institutions to better align and position their training materials to the BPM required capabilities. It could also be beneficial to individuals looking for a systematic and in-depth understanding of BPM capabilities and trainings.
Resumo:
This paper presents an approach to predict the operating conditions of machine based on classification and regression trees (CART) and adaptive neuro-fuzzy inference system (ANFIS) in association with direct prediction strategy for multi-step ahead prediction of time series techniques. In this study, the number of available observations and the number of predicted steps are initially determined by using false nearest neighbor method and auto mutual information technique, respectively. These values are subsequently utilized as inputs for prediction models to forecast the future values of the machines’ operating conditions. The performance of the proposed approach is then evaluated by using real trending data of low methane compressor. A comparative study of the predicted results obtained from CART and ANFIS models is also carried out to appraise the prediction capability of these models. The results show that the ANFIS prediction model can track the change in machine conditions and has the potential for using as a tool to machine fault prognosis.